Citation: |
[1] |
R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," 2nd edition, Elsevier/Academic Press, Amsterdam, Boston, 2003. |
[2] |
W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, "One-Parameter Semigroups of Positive Operators," Springer-Verlag, Berlin, 1986. |
[3] |
À. Calsina and J. Saldaña, Basic theory for a class of models of hierarchically structured population dynamics with distributed states in the recruitment, Math. Models Methods Appl. Sci., 16 (2006), 1695-1722.doi: 10.1142/S0218202506001686. |
[4] |
Ph. Clément, H. J. A. M. Heijmans, S. Angenent, C. J. van Duijn and B. de Pagter, "One-Parameter Semigroups," North-Holland, Amsterdam 1987. |
[5] |
J. Dyson, R. Villella-Bressan and G. F. Webb, Asynchronous exponential growth in an age structured population of proliferating and quiescent cells, Math. Biosci., 177&178 (2002), 73-83. |
[6] |
K. J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," Springer, New York 2000. |
[7] |
J. Z. Farkas, D. Green and P. Hinow, Semigroup analysis of structured parasite populations, Math. Model. Nat. Phenom., 5 (2010), 94-114, arXiv:0812.1363. |
[8] |
J. Z. Farkas and T. Hagen, Asymptotic analysis of a size-structured cannibalism model with infinite dimensional environmental feedback, Commun. Pure Appl. Anal., 8 (2009), 1825-1839, arXiv:0812.1369. |
[9] |
J. Z. Farkas and T. Hagen, Hierarchical size-structured populations: The linearized semigroup approach, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 17 (2010), 639-657, arXiv:0812.1367. |
[10] |
J. Z. Farkas and P. Hinow, On a size-structured two-phase population model with infinite states-at-birth, Positivity, 14 (2010), 501-514, arXiv:0903.1649. |
[11] |
A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, $C_0$-semigroups generated by second order differential operators with general Wentzell boundary conditions, Proc. Amer. Math. Soc., 128 (2000), 1981-1989.doi: 10.1090/S0002-9939-00-05486-1. |
[12] |
A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition, J. Evol. Equ., 2 (2002), 1-19.doi: 10.1007/s00028-002-8077-y. |
[13] |
W. Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math., 55 (1952), 468-519.doi: 10.2307/1969644. |
[14] |
W. Feller, Diffusion processes in one dimension, Trans. Amer. Math. Soc., 77 (1954), 1-31.doi: 10.1090/S0002-9947-1954-0063607-6. |
[15] |
D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, Berlin, 1983. |
[16] |
G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480. |
[17] |
M. Gyllenberg and G. F. Webb, Asynchronous exponential growth of semigroups of nonlinear operators, J. Math. Anal. Appl., 167 (1992), 443-467.doi: 10.1016/0022-247X(92)90218-3. |
[18] |
K. P. Hadeler, Structured populations with diffusion in state space, Math. Biosci. Eng., 7 (2010), 37-49.doi: 10.3934/mbe.2010.7.37. |
[19] |
R. Haller-Dintelmann, M. Hieber and J. Rehberg, Irreducibility and mixed boundary conditions, Positivity, 12 (2008), 83-91.doi: 10.1007/s11117-007-2131-5. |
[20] |
M. Langlais and F. A. Milner, Existence and uniqueness of solutions for a diffusion model of host-parasite dynamics, J. Math. Anal. Appl., 279 (2003), 463-474.doi: 10.1016/S0022-247X(03)00020-9. |
[21] |
J. A. J. Metz and O. Diekmann, "The Dynamics of Physiologically Structured Populations," Springer, Berlin, 1986. |
[22] |
F. A. Milner and C. A. Patton, A diffusion model for host-parasite interaction, J. Comput. Appl. Math., 154 (2003), 273-302.doi: 10.1016/S0377-0427(02)00826-9. |
[23] |
J. L. Vazquez and E. Vitillaro, Heat equation with dynamical boundary conditions of reactive type, Comm. Partial Differential Equations, 33 (2008), 561-612.doi: 10.1080/03605300801970960. |
[24] |
A. D. Ventcel, Semigroups of operators that correspond to a generalized differential operator of second order (Russian), Dokl. Akad. Nauk SSSR (N.S.), 111 (1956), 269-272. |
[25] |
A. D. Ventcel, On boundary conditions for multi-dimensional diffusion processes, Theor. Probability Appl., 4 (1959), 164-177.doi: 10.1137/1104014. |
[26] |
R. Waldstätter, K. P. Hadeler and G. Greiner, A Lotka-McKendrick model for a population structured by the level of parasitic infection, SIAM J. Math. Anal., 19 (1988), 1108-1118.doi: 10.1137/0519075. |
[27] |
G. F. Webb, "Theory of Nonlinear Age-Dependent Population Dynamics," Marcel Dekker, New York, 1985. |