-
Previous Article
Glucose level regulation via integral high-order sliding modes
- MBE Home
- This Issue
-
Next Article
Adaptive response and enlargement of dynamic range
Use of quasi-normal form to examine stability of tumor-free equilibrium in a mathematical model of bcg treatment of bladder cancer
1. | Ariel University Centerof of Samaria, Mathematics Department, Ariel, Israel, Israel |
References:
[1] |
A. Algaba, E. Friere and E. Gamero, Characterizing and computing normal forms using Lie transforms: A survey, Dyn. Continuous, Discrete Impulsive Systems, 8 (2001), 449-476. |
[2] |
V. I. Arnold, "Geometrical Methods in the Theory of Ordinary Differential Equations," Springer Verlag, New York, 1982. |
[3] |
J. Archuleta, P. Mullens and T. P. Primm, The relationship of temperature to desiccation and starvation tolerance of the Mycobacterium avium complex, Arch. Microbiol., 178 (2002), 311-314.
doi: 10.1007/s00203-002-0455-x. |
[4] |
V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, in "Dynamical Systems III, Encyclopaedia Mathematical Science," 2nd ed., Springer-Verlag, New York, 1993. |
[5] |
R. F. M. Bevers, K. H. Kurth and D. J. H. Schamhart, Role of urothelial cells in BCG immuno-therapy for superficial bladder cancer, Brit. J. Cancer, 91 (2004), 607-612. |
[6] |
Y. N. Bibikov, "Local Theory of Nonlinear Analytic Ordinary Differential Equations," Lecture Notes in Mathematics, Springer Verlag, New York, 702 (1979). |
[7] | |
[8] |
A. Bohle and S. Brandau, Immune mechanisms in bacillus CalmetteGuerin immunotherapy for superficial bladder cancer, J. Urol., 170 (2003), 96496.
doi: 10.1097/01.ju.0000073852.24341.4a. |
[9] |
A. D. Bruno, "Local Methods in Nonlinear Diff. Equations," Springer Verlag, New York, 1989. |
[10] |
S. Bunimovich-Mendrazitsky, E. Shochat and L. Stone, Mathematical Model of BCG Immunotherapy in Superficial Bladder Cancer, Bull. Math. Biol., 69 (2007), 1847-1870.
doi: 10.1007/s11538-007-9195-z. |
[11] |
S. Bunimovich-Mendrazitsky, H. M. Byrne and L. Stone, Mathematical Model of Pulsed Immunotherapy for Superficial Bladder Cancer, Bull. Math. Biol., 70 (2008), 2055-276.
doi: 10.1007/s11538-008-9344-z. |
[12] |
C. W. Cheng, M. T. Ng, S. Y. Chan and W. H. Sun, Low dose BCG as adjuvant therapy for superficial bladder cancer and literature review, Anz Journal of Surgery, 74 (2004), 569-572.
doi: 10.1111/j.1445-2197.2004.02941.x. |
[13] |
S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory," New York: Springer, 1982. |
[14] |
S. N. Chow, C. Li and D. Wang, "Normal Forms and Bifurcations of Planar Vector Fields," Cambridge University Press, Cambridge, 1994.
doi: 10.1017/CBO9780511665639. |
[15] |
Y. M. Goltser, On the strong stability of resonance systems with parametrical perturbations, Applied Mathematics and Mechanics (PMM), Acad. Sc. USSR, 41 (1977), 251-261. |
[16] |
Y. M. Goltser, Bifurcation and stability of neutral systems in the neighborhood of third order resonance, Applied Mathematics and Mechanics (PMM), Acad. Sc. USSR, 43 (1979), 429-440. |
[17] |
Y. M. Goltser, On the extent of proximity of neutral systems to internal resonance, Applied Mathematics and Mechanics (PMM), Acad. Sc. USSR, 50 (1986), 945-954. |
[18] |
Y. M. Goltser, Some bifurcation problems of stability, Nonlinear Analysis, TMA, 30 (1997), 1461-1467.
doi: 10.1016/S0362-546X(97)00044-8. |
[19] |
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields," Applied Mathematical Sciences, New York: Springer, 1983. |
[20] |
G. Iooss and M. Adelmeyer, "Topics in Bifurcation Theory and Applications," World Scientific, Singapore, 1992. |
[21] |
A. Jemal, T. Murray, E. Ward, A. Samuels, R. C. Tiwari, A. Ghafoor, E. J. Feuer and M. J. Thun, Cancer Statistics, CA Cancer. J. Clin., 55 (2005), 10-30.
doi: 10.3322/canjclin.55.1.10. |
[22] |
F. A. Kelley, The stable, center stable, center, center unstable, and unstable manifolds, J. Diff. Eqns, 3 (1967), 546-570.
doi: 10.1016/0022-0396(67)90016-2. |
[23] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumours: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295-321. |
[24] |
A. M. Liapunov, "Probléme géné ral de la stabilité du Mouvement," Princeton University Press, Ann. of Math. Stud, 1947. |
[25] |
I. G. Malkin, "Theory of Stability of Motion," Translated by Atomic Energy Commission, 1952, 92-94. |
[26] |
J. J Patard, F. Saint, F. Velotti, C. C. Abbou and D. K. Chopin, Immune response following intravesical bacillus Calmette-Guerin instillations in superficial bladder cancer: A review, Urol. Res., 26 (1998), 155-159.
doi: 10.1007/s002400050039. |
[27] |
V. A Pliss, The reduction principle in the theory of the stability motion, Izv.Akad. Nauk SSSR, Ser. Mat. 28 (1964), 1297-1324. |
[28] | |
[29] |
E. Shochat, D. Hart and Z. Agur, Using computer simulations for evaluating the efficacy of breast cancer chemotherapy protocols, Math. Models&Methods in Applied Sciences, 9 (1999), 599-615.
doi: 10.1142/S0218202599000312. |
[30] |
K. R. Swanson, C. Bridge, J. D. Murray and E. C. Alvord, Virtual and real brain tumors: Using mathematical modeling to quantify glioma growth and invasion, J. Neurol. Sci., 216 (2003), 1-10.
doi: 10.1016/j.jns.2003.06.001. |
[31] |
J. Wigginton and D. Kirschner, A model to predict cell-mediated immune regulatory mechanisms during human infection with Mycobacterium tuberculosis, J. Immunol., 166 (2001), 1951-1967. |
[32] |
Q. S. Zhang, A. Y. T. Leung and J. E. Cooper, Computation of normal forms for higher dimensional semi-simple systems, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis, 8 (2001), 559-574. |
show all references
References:
[1] |
A. Algaba, E. Friere and E. Gamero, Characterizing and computing normal forms using Lie transforms: A survey, Dyn. Continuous, Discrete Impulsive Systems, 8 (2001), 449-476. |
[2] |
V. I. Arnold, "Geometrical Methods in the Theory of Ordinary Differential Equations," Springer Verlag, New York, 1982. |
[3] |
J. Archuleta, P. Mullens and T. P. Primm, The relationship of temperature to desiccation and starvation tolerance of the Mycobacterium avium complex, Arch. Microbiol., 178 (2002), 311-314.
doi: 10.1007/s00203-002-0455-x. |
[4] |
V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, in "Dynamical Systems III, Encyclopaedia Mathematical Science," 2nd ed., Springer-Verlag, New York, 1993. |
[5] |
R. F. M. Bevers, K. H. Kurth and D. J. H. Schamhart, Role of urothelial cells in BCG immuno-therapy for superficial bladder cancer, Brit. J. Cancer, 91 (2004), 607-612. |
[6] |
Y. N. Bibikov, "Local Theory of Nonlinear Analytic Ordinary Differential Equations," Lecture Notes in Mathematics, Springer Verlag, New York, 702 (1979). |
[7] | |
[8] |
A. Bohle and S. Brandau, Immune mechanisms in bacillus CalmetteGuerin immunotherapy for superficial bladder cancer, J. Urol., 170 (2003), 96496.
doi: 10.1097/01.ju.0000073852.24341.4a. |
[9] |
A. D. Bruno, "Local Methods in Nonlinear Diff. Equations," Springer Verlag, New York, 1989. |
[10] |
S. Bunimovich-Mendrazitsky, E. Shochat and L. Stone, Mathematical Model of BCG Immunotherapy in Superficial Bladder Cancer, Bull. Math. Biol., 69 (2007), 1847-1870.
doi: 10.1007/s11538-007-9195-z. |
[11] |
S. Bunimovich-Mendrazitsky, H. M. Byrne and L. Stone, Mathematical Model of Pulsed Immunotherapy for Superficial Bladder Cancer, Bull. Math. Biol., 70 (2008), 2055-276.
doi: 10.1007/s11538-008-9344-z. |
[12] |
C. W. Cheng, M. T. Ng, S. Y. Chan and W. H. Sun, Low dose BCG as adjuvant therapy for superficial bladder cancer and literature review, Anz Journal of Surgery, 74 (2004), 569-572.
doi: 10.1111/j.1445-2197.2004.02941.x. |
[13] |
S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory," New York: Springer, 1982. |
[14] |
S. N. Chow, C. Li and D. Wang, "Normal Forms and Bifurcations of Planar Vector Fields," Cambridge University Press, Cambridge, 1994.
doi: 10.1017/CBO9780511665639. |
[15] |
Y. M. Goltser, On the strong stability of resonance systems with parametrical perturbations, Applied Mathematics and Mechanics (PMM), Acad. Sc. USSR, 41 (1977), 251-261. |
[16] |
Y. M. Goltser, Bifurcation and stability of neutral systems in the neighborhood of third order resonance, Applied Mathematics and Mechanics (PMM), Acad. Sc. USSR, 43 (1979), 429-440. |
[17] |
Y. M. Goltser, On the extent of proximity of neutral systems to internal resonance, Applied Mathematics and Mechanics (PMM), Acad. Sc. USSR, 50 (1986), 945-954. |
[18] |
Y. M. Goltser, Some bifurcation problems of stability, Nonlinear Analysis, TMA, 30 (1997), 1461-1467.
doi: 10.1016/S0362-546X(97)00044-8. |
[19] |
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields," Applied Mathematical Sciences, New York: Springer, 1983. |
[20] |
G. Iooss and M. Adelmeyer, "Topics in Bifurcation Theory and Applications," World Scientific, Singapore, 1992. |
[21] |
A. Jemal, T. Murray, E. Ward, A. Samuels, R. C. Tiwari, A. Ghafoor, E. J. Feuer and M. J. Thun, Cancer Statistics, CA Cancer. J. Clin., 55 (2005), 10-30.
doi: 10.3322/canjclin.55.1.10. |
[22] |
F. A. Kelley, The stable, center stable, center, center unstable, and unstable manifolds, J. Diff. Eqns, 3 (1967), 546-570.
doi: 10.1016/0022-0396(67)90016-2. |
[23] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumours: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295-321. |
[24] |
A. M. Liapunov, "Probléme géné ral de la stabilité du Mouvement," Princeton University Press, Ann. of Math. Stud, 1947. |
[25] |
I. G. Malkin, "Theory of Stability of Motion," Translated by Atomic Energy Commission, 1952, 92-94. |
[26] |
J. J Patard, F. Saint, F. Velotti, C. C. Abbou and D. K. Chopin, Immune response following intravesical bacillus Calmette-Guerin instillations in superficial bladder cancer: A review, Urol. Res., 26 (1998), 155-159.
doi: 10.1007/s002400050039. |
[27] |
V. A Pliss, The reduction principle in the theory of the stability motion, Izv.Akad. Nauk SSSR, Ser. Mat. 28 (1964), 1297-1324. |
[28] | |
[29] |
E. Shochat, D. Hart and Z. Agur, Using computer simulations for evaluating the efficacy of breast cancer chemotherapy protocols, Math. Models&Methods in Applied Sciences, 9 (1999), 599-615.
doi: 10.1142/S0218202599000312. |
[30] |
K. R. Swanson, C. Bridge, J. D. Murray and E. C. Alvord, Virtual and real brain tumors: Using mathematical modeling to quantify glioma growth and invasion, J. Neurol. Sci., 216 (2003), 1-10.
doi: 10.1016/j.jns.2003.06.001. |
[31] |
J. Wigginton and D. Kirschner, A model to predict cell-mediated immune regulatory mechanisms during human infection with Mycobacterium tuberculosis, J. Immunol., 166 (2001), 1951-1967. |
[32] |
Q. S. Zhang, A. Y. T. Leung and J. E. Cooper, Computation of normal forms for higher dimensional semi-simple systems, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis, 8 (2001), 559-574. |
[1] |
Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109 |
[2] |
Haitao Song, Weihua Jiang, Shengqiang Liu. Virus dynamics model with intracellular delays and immune response. Mathematical Biosciences & Engineering, 2015, 12 (1) : 185-208. doi: 10.3934/mbe.2015.12.185 |
[3] |
John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170 |
[4] |
Mudassar Imran, Hal L. Smith. The dynamics of bacterial infection, innate immune response, and antibiotic treatment. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 127-143. doi: 10.3934/dcdsb.2007.8.127 |
[5] |
Aiping Wang, Michael Y. Li. Viral dynamics of HIV-1 with CTL immune response. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2257-2272. doi: 10.3934/dcdsb.2020212 |
[6] |
Yilong Li, Shigui Ruan, Dongmei Xiao. The Within-Host dynamics of malaria infection with immune response. Mathematical Biosciences & Engineering, 2011, 8 (4) : 999-1018. doi: 10.3934/mbe.2011.8.999 |
[7] |
Josef Hofbauer, Sylvain Sorin. Best response dynamics for continuous zero--sum games. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 215-224. doi: 10.3934/dcdsb.2006.6.215 |
[8] |
Huiyan Zhu, Xingfu Zou. Dynamics of a HIV-1 Infection model with cell-mediated immune response and intracellular delay. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 511-524. doi: 10.3934/dcdsb.2009.12.511 |
[9] |
Zhijun Liu, Lianwen Wang, Ronghua Tan. Spatiotemporal dynamics for a diffusive HIV-1 infection model with distributed delays and CTL immune response. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2767-2790. doi: 10.3934/dcdsb.2021159 |
[10] |
Lianwen Wang, Zhijun Liu, Yong Li, Dashun Xu. Complete dynamical analysis for a nonlinear HTLV-I infection model with distributed delay, CTL response and immune impairment. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 917-933. doi: 10.3934/dcdsb.2019196 |
[11] |
Yu Ji, Lan Liu. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 133-149. doi: 10.3934/dcdsb.2016.21.133 |
[12] |
Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282 |
[13] |
Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363 |
[14] |
Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643 |
[15] |
David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117 |
[16] |
Mika Yoshida, Kinji Fuchikami, Tatsuya Uezu. Realization of immune response features by dynamical system models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 531-552. doi: 10.3934/mbe.2007.4.531 |
[17] |
Sébastien Guisset. Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations. Kinetic and Related Models, 2020, 13 (4) : 739-758. doi: 10.3934/krm.2020025 |
[18] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[19] |
Virginie De Witte, Willy Govaerts. Numerical computation of normal form coefficients of bifurcations of odes in MATLAB. Conference Publications, 2011, 2011 (Special) : 362-372. doi: 10.3934/proc.2011.2011.362 |
[20] |
Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]