-
Previous Article
Modelling seasonal influenza in Israel
- MBE Home
- This Issue
-
Next Article
Use of quasi-normal form to examine stability of tumor-free equilibrium in a mathematical model of bcg treatment of bladder cancer
Glucose level regulation via integral high-order sliding modes
1. | School of Math Sciences, Tel Aviv University, Tel Aviv, Ramat Aviv, 69978, Israel |
References:
[1] |
R. N. Bergman, S. Phillips and C. Cobelli, Physiologic evaluation of factors controlling glucose tolerance in man, J. Clin. Invest, 68 (1981), 1456-1462.
doi: 10.1172/JCI110398. |
[2] |
F. Chee, T. L. Fernando and V. V. Heerden, Closed-loop glucose control in critically ill patients using continuous glucose monitoring system(CGMS) in real time, IEEE Trans. Information Technology in Biomedicine, 7 (2003), 419-425. |
[3] |
L. Dorel, "Transient features of High Order Sliding Modes," Ph.D thesis, Tel Aviv University, 2010. |
[4] |
A. F. Fillipov, "Differential equations with Discontinuous Right-Hand Sides," Kluwer academic Publishers, Dordrecht, 1988. |
[5] |
U. Fisher, E. Salzsieder, E. J. Freyse and G. Albrecht, Experimental validation of a glucose-insulin control model to simulate patterns in glucose turnover, Comput. Methods Programs, 7 (1990), 249-258. |
[6] |
A. Isidori, "Nonlinear Control Systems," Springer Verlag, New York, 1989. |
[7] |
K. H. Kienitz and T. A. Yoneyama, Robust controller for insulin pumps based on H-Infinity theory, IEEETrans. Inf. Biomed. Eng, 40 (1993), 1133-1137.
doi: 10.1109/10.245631. |
[8] |
A. Levant, Sliding order and sliding accuracy in sliding mode control, Int. Journal of Control, 58 (1993), 1247-1263.
doi: 10.1080/00207179308923053. |
[9] |
A. Levant, Higher order sliding modes, differentiation and output-feedback control, Int. Journal of Control, 76 (2003), 924-941. |
[10] |
A. Levant, Homogeneity approach to high-order sliding mode design, Automatica, 41 (2005), 823-830.
doi: 10.1016/j.automatica.2004.11.029. |
[11] |
A. Levant and L. Alelishvili, Integral high-order sliding modes, IEEE Trans. Automat. Control, 52 (2007), 1278-1282.
doi: 10.1109/TAC.2007.900830. |
[12] |
F. Lewis and V. Syrmos, "Optimal Control," 2nd edition, John Wiley, New York, 1995. |
[13] |
R. S. Parker, F. J. Doyle and N. A. Peppas, A Model-Based algorithm for Blood Glucose Concentration in Type I Diabetic Patients IEEE Trans. Biomed. Eng., 46 (1999), 148-157.
doi: 10.1109/10.740877. |
[14] |
Y. B. Shtessel and P. Kaveh, Blood glucose regulation using higher-order sliding mode control, Int.J. of Robust and Nonlinear Control, 18 (2008), 557-569.
doi: 10.1002/rnc.1223. |
[15] |
V. Utkin, "Sliding Modes in Control and Optimization," Springer-Verlag, Germany, 1992. |
show all references
References:
[1] |
R. N. Bergman, S. Phillips and C. Cobelli, Physiologic evaluation of factors controlling glucose tolerance in man, J. Clin. Invest, 68 (1981), 1456-1462.
doi: 10.1172/JCI110398. |
[2] |
F. Chee, T. L. Fernando and V. V. Heerden, Closed-loop glucose control in critically ill patients using continuous glucose monitoring system(CGMS) in real time, IEEE Trans. Information Technology in Biomedicine, 7 (2003), 419-425. |
[3] |
L. Dorel, "Transient features of High Order Sliding Modes," Ph.D thesis, Tel Aviv University, 2010. |
[4] |
A. F. Fillipov, "Differential equations with Discontinuous Right-Hand Sides," Kluwer academic Publishers, Dordrecht, 1988. |
[5] |
U. Fisher, E. Salzsieder, E. J. Freyse and G. Albrecht, Experimental validation of a glucose-insulin control model to simulate patterns in glucose turnover, Comput. Methods Programs, 7 (1990), 249-258. |
[6] |
A. Isidori, "Nonlinear Control Systems," Springer Verlag, New York, 1989. |
[7] |
K. H. Kienitz and T. A. Yoneyama, Robust controller for insulin pumps based on H-Infinity theory, IEEETrans. Inf. Biomed. Eng, 40 (1993), 1133-1137.
doi: 10.1109/10.245631. |
[8] |
A. Levant, Sliding order and sliding accuracy in sliding mode control, Int. Journal of Control, 58 (1993), 1247-1263.
doi: 10.1080/00207179308923053. |
[9] |
A. Levant, Higher order sliding modes, differentiation and output-feedback control, Int. Journal of Control, 76 (2003), 924-941. |
[10] |
A. Levant, Homogeneity approach to high-order sliding mode design, Automatica, 41 (2005), 823-830.
doi: 10.1016/j.automatica.2004.11.029. |
[11] |
A. Levant and L. Alelishvili, Integral high-order sliding modes, IEEE Trans. Automat. Control, 52 (2007), 1278-1282.
doi: 10.1109/TAC.2007.900830. |
[12] |
F. Lewis and V. Syrmos, "Optimal Control," 2nd edition, John Wiley, New York, 1995. |
[13] |
R. S. Parker, F. J. Doyle and N. A. Peppas, A Model-Based algorithm for Blood Glucose Concentration in Type I Diabetic Patients IEEE Trans. Biomed. Eng., 46 (1999), 148-157.
doi: 10.1109/10.740877. |
[14] |
Y. B. Shtessel and P. Kaveh, Blood glucose regulation using higher-order sliding mode control, Int.J. of Robust and Nonlinear Control, 18 (2008), 557-569.
doi: 10.1002/rnc.1223. |
[15] |
V. Utkin, "Sliding Modes in Control and Optimization," Springer-Verlag, Germany, 1992. |
[1] |
Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations and Control Theory, 2019, 8 (4) : 883-902. doi: 10.3934/eect.2019043 |
[2] |
Nasim Ullah, Ahmad Aziz Al-Ahmadi. A triple mode robust sliding mode controller for a nonlinear system with measurement noise and uncertainty. Mathematical Foundations of Computing, 2020, 3 (2) : 81-99. doi: 10.3934/mfc.2020007 |
[3] |
Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375 |
[4] |
Yuan Li, Ruxia Zhang, Yi Zhang, Bo Yang. Sliding mode control for uncertain T-S fuzzy systems with input and state delays. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 345-354. doi: 10.3934/naco.2020006 |
[5] |
Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control and Related Fields, 2021, 11 (4) : 905-934. doi: 10.3934/mcrf.2020051 |
[6] |
Dongyun Wang. Sliding mode observer based control for T-S fuzzy descriptor systems. Mathematical Foundations of Computing, 2022, 5 (1) : 17-32. doi: 10.3934/mfc.2021017 |
[7] |
Xiang Dong, Chengcheng Ren, Shuping He, Long Cheng, Shuo Wang. Finite-time sliding mode control for UVMS via T-S fuzzy approach. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1699-1712. doi: 10.3934/dcdss.2021167 |
[8] |
Ramasamy Kavikumar, Boomipalagan Kaviarasan, Yong-Gwon Lee, Oh-Min Kwon, Rathinasamy Sakthivel, Seong-Gon Choi. Robust dynamic sliding mode control design for interval type-2 fuzzy systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1839-1858. doi: 10.3934/dcdss.2022014 |
[9] |
Yaobang Ye, Zongyu Zuo, Michael Basin. Robust adaptive sliding mode tracking control for a rigid body based on Lie subgroups of SO(3). Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1823-1837. doi: 10.3934/dcdss.2022010 |
[10] |
Ellina Grigorieva, Evgenii Khailov. Chattering and its approximation in control of psoriasis treatment. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2251-2280. doi: 10.3934/dcdsb.2019094 |
[11] |
Saloni Rathee, Nilam. Quantitative analysis of time delays of glucose - insulin dynamics using artificial pancreas. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3115-3129. doi: 10.3934/dcdsb.2015.20.3115 |
[12] |
Jiamin Zhu, Emmanuel Trélat, Max Cerf. Planar tilting maneuver of a spacecraft: Singular arcs in the minimum time problem and chattering. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1347-1388. doi: 10.3934/dcdsb.2016.21.1347 |
[13] |
Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152 |
[14] |
Siwei Yu, Jianwei Ma, Stanley Osher. Geometric mode decomposition. Inverse Problems and Imaging, 2018, 12 (4) : 831-852. doi: 10.3934/ipi.2018035 |
[15] |
Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, J. Nathan Kutz. On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 2014, 1 (2) : 391-421. doi: 10.3934/jcd.2014.1.391 |
[16] |
Steven L. Brunton, Joshua L. Proctor, Jonathan H. Tu, J. Nathan Kutz. Compressed sensing and dynamic mode decomposition. Journal of Computational Dynamics, 2015, 2 (2) : 165-191. doi: 10.3934/jcd.2015002 |
[17] |
Hao Zhang, Scott T. M. Dawson, Clarence W. Rowley, Eric A. Deem, Louis N. Cattafesta. Evaluating the accuracy of the dynamic mode decomposition. Journal of Computational Dynamics, 2020, 7 (1) : 35-56. doi: 10.3934/jcd.2020002 |
[18] |
Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial and Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098 |
[19] |
Tomáš Roubíček, V. Mantič, C. G. Panagiotopoulos. A quasistatic mixed-mode delamination model. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 591-610. doi: 10.3934/dcdss.2013.6.591 |
[20] |
Clelia Marchionna. Free vibrations in space of the single mode for the Kirchhoff string. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2947-2971. doi: 10.3934/cpaa.2013.12.2947 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]