2011, 8(2): 549-560. doi: 10.3934/mbe.2011.8.549

Glucose level regulation via integral high-order sliding modes

1. 

School of Math Sciences, Tel Aviv University, Tel Aviv, Ramat Aviv, 69978, Israel

Received  March 2010 Revised  October 2010 Published  April 2011

Diabetes is a condition in which the body either does not produce enough insulin, or does not properly respond to it. This causes the glucose level in blood to increase. An algorithm based on Integral High-Order Sliding Mode technique is proposed, which keeps the normal blood glucose level automatically releasing insulin into the blood. The system is highly insensitive to inevitable parametric and model uncertainties, measurement noises and small delays.
Citation: Lela Dorel. Glucose level regulation via integral high-order sliding modes. Mathematical Biosciences & Engineering, 2011, 8 (2) : 549-560. doi: 10.3934/mbe.2011.8.549
References:
[1]

R. N. Bergman, S. Phillips and C. Cobelli, Physiologic evaluation of factors controlling glucose tolerance in man, J. Clin. Invest, 68 (1981), 1456-1462. doi: 10.1172/JCI110398.

[2]

F. Chee, T. L. Fernando and V. V. Heerden, Closed-loop glucose control in critically ill patients using continuous glucose monitoring system(CGMS) in real time, IEEE Trans. Information Technology in Biomedicine, 7 (2003), 419-425.

[3]

L. Dorel, "Transient features of High Order Sliding Modes," Ph.D thesis, Tel Aviv University, 2010.

[4]

A. F. Fillipov, "Differential equations with Discontinuous Right-Hand Sides," Kluwer academic Publishers, Dordrecht, 1988.

[5]

U. Fisher, E. Salzsieder, E. J. Freyse and G. Albrecht, Experimental validation of a glucose-insulin control model to simulate patterns in glucose turnover, Comput. Methods Programs, 7 (1990), 249-258.

[6]

A. Isidori, "Nonlinear Control Systems," Springer Verlag, New York, 1989.

[7]

K. H. Kienitz and T. A. Yoneyama, Robust controller for insulin pumps based on H-Infinity theory, IEEETrans. Inf. Biomed. Eng, 40 (1993), 1133-1137. doi: 10.1109/10.245631.

[8]

A. Levant, Sliding order and sliding accuracy in sliding mode control, Int. Journal of Control, 58 (1993), 1247-1263. doi: 10.1080/00207179308923053.

[9]

A. Levant, Higher order sliding modes, differentiation and output-feedback control, Int. Journal of Control, 76 (2003), 924-941.

[10]

A. Levant, Homogeneity approach to high-order sliding mode design, Automatica, 41 (2005), 823-830. doi: 10.1016/j.automatica.2004.11.029.

[11]

A. Levant and L. Alelishvili, Integral high-order sliding modes, IEEE Trans. Automat. Control, 52 (2007), 1278-1282. doi: 10.1109/TAC.2007.900830.

[12]

F. Lewis and V. Syrmos, "Optimal Control," 2nd edition, John Wiley, New York, 1995.

[13]

R. S. Parker, F. J. Doyle and N. A. Peppas, A Model-Based algorithm for Blood Glucose Concentration in Type I Diabetic Patients IEEE Trans. Biomed. Eng., 46 (1999), 148-157. doi: 10.1109/10.740877.

[14]

Y. B. Shtessel and P. Kaveh, Blood glucose regulation using higher-order sliding mode control, Int.J. of Robust and Nonlinear Control, 18 (2008), 557-569. doi: 10.1002/rnc.1223.

[15]

V. Utkin, "Sliding Modes in Control and Optimization," Springer-Verlag, Germany, 1992.

show all references

References:
[1]

R. N. Bergman, S. Phillips and C. Cobelli, Physiologic evaluation of factors controlling glucose tolerance in man, J. Clin. Invest, 68 (1981), 1456-1462. doi: 10.1172/JCI110398.

[2]

F. Chee, T. L. Fernando and V. V. Heerden, Closed-loop glucose control in critically ill patients using continuous glucose monitoring system(CGMS) in real time, IEEE Trans. Information Technology in Biomedicine, 7 (2003), 419-425.

[3]

L. Dorel, "Transient features of High Order Sliding Modes," Ph.D thesis, Tel Aviv University, 2010.

[4]

A. F. Fillipov, "Differential equations with Discontinuous Right-Hand Sides," Kluwer academic Publishers, Dordrecht, 1988.

[5]

U. Fisher, E. Salzsieder, E. J. Freyse and G. Albrecht, Experimental validation of a glucose-insulin control model to simulate patterns in glucose turnover, Comput. Methods Programs, 7 (1990), 249-258.

[6]

A. Isidori, "Nonlinear Control Systems," Springer Verlag, New York, 1989.

[7]

K. H. Kienitz and T. A. Yoneyama, Robust controller for insulin pumps based on H-Infinity theory, IEEETrans. Inf. Biomed. Eng, 40 (1993), 1133-1137. doi: 10.1109/10.245631.

[8]

A. Levant, Sliding order and sliding accuracy in sliding mode control, Int. Journal of Control, 58 (1993), 1247-1263. doi: 10.1080/00207179308923053.

[9]

A. Levant, Higher order sliding modes, differentiation and output-feedback control, Int. Journal of Control, 76 (2003), 924-941.

[10]

A. Levant, Homogeneity approach to high-order sliding mode design, Automatica, 41 (2005), 823-830. doi: 10.1016/j.automatica.2004.11.029.

[11]

A. Levant and L. Alelishvili, Integral high-order sliding modes, IEEE Trans. Automat. Control, 52 (2007), 1278-1282. doi: 10.1109/TAC.2007.900830.

[12]

F. Lewis and V. Syrmos, "Optimal Control," 2nd edition, John Wiley, New York, 1995.

[13]

R. S. Parker, F. J. Doyle and N. A. Peppas, A Model-Based algorithm for Blood Glucose Concentration in Type I Diabetic Patients IEEE Trans. Biomed. Eng., 46 (1999), 148-157. doi: 10.1109/10.740877.

[14]

Y. B. Shtessel and P. Kaveh, Blood glucose regulation using higher-order sliding mode control, Int.J. of Robust and Nonlinear Control, 18 (2008), 557-569. doi: 10.1002/rnc.1223.

[15]

V. Utkin, "Sliding Modes in Control and Optimization," Springer-Verlag, Germany, 1992.

[1]

Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations and Control Theory, 2019, 8 (4) : 883-902. doi: 10.3934/eect.2019043

[2]

Nasim Ullah, Ahmad Aziz Al-Ahmadi. A triple mode robust sliding mode controller for a nonlinear system with measurement noise and uncertainty. Mathematical Foundations of Computing, 2020, 3 (2) : 81-99. doi: 10.3934/mfc.2020007

[3]

Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375

[4]

Yuan Li, Ruxia Zhang, Yi Zhang, Bo Yang. Sliding mode control for uncertain T-S fuzzy systems with input and state delays. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 345-354. doi: 10.3934/naco.2020006

[5]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control and Related Fields, 2021, 11 (4) : 905-934. doi: 10.3934/mcrf.2020051

[6]

Dongyun Wang. Sliding mode observer based control for T-S fuzzy descriptor systems. Mathematical Foundations of Computing, 2022, 5 (1) : 17-32. doi: 10.3934/mfc.2021017

[7]

Xiang Dong, Chengcheng Ren, Shuping He, Long Cheng, Shuo Wang. Finite-time sliding mode control for UVMS via T-S fuzzy approach. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1699-1712. doi: 10.3934/dcdss.2021167

[8]

Ramasamy Kavikumar, Boomipalagan Kaviarasan, Yong-Gwon Lee, Oh-Min Kwon, Rathinasamy Sakthivel, Seong-Gon Choi. Robust dynamic sliding mode control design for interval type-2 fuzzy systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1839-1858. doi: 10.3934/dcdss.2022014

[9]

Yaobang Ye, Zongyu Zuo, Michael Basin. Robust adaptive sliding mode tracking control for a rigid body based on Lie subgroups of SO(3). Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1823-1837. doi: 10.3934/dcdss.2022010

[10]

Ellina Grigorieva, Evgenii Khailov. Chattering and its approximation in control of psoriasis treatment. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2251-2280. doi: 10.3934/dcdsb.2019094

[11]

Saloni Rathee, Nilam. Quantitative analysis of time delays of glucose - insulin dynamics using artificial pancreas. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3115-3129. doi: 10.3934/dcdsb.2015.20.3115

[12]

Jiamin Zhu, Emmanuel Trélat, Max Cerf. Planar tilting maneuver of a spacecraft: Singular arcs in the minimum time problem and chattering. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1347-1388. doi: 10.3934/dcdsb.2016.21.1347

[13]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[14]

Siwei Yu, Jianwei Ma, Stanley Osher. Geometric mode decomposition. Inverse Problems and Imaging, 2018, 12 (4) : 831-852. doi: 10.3934/ipi.2018035

[15]

Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, J. Nathan Kutz. On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 2014, 1 (2) : 391-421. doi: 10.3934/jcd.2014.1.391

[16]

Steven L. Brunton, Joshua L. Proctor, Jonathan H. Tu, J. Nathan Kutz. Compressed sensing and dynamic mode decomposition. Journal of Computational Dynamics, 2015, 2 (2) : 165-191. doi: 10.3934/jcd.2015002

[17]

Hao Zhang, Scott T. M. Dawson, Clarence W. Rowley, Eric A. Deem, Louis N. Cattafesta. Evaluating the accuracy of the dynamic mode decomposition. Journal of Computational Dynamics, 2020, 7 (1) : 35-56. doi: 10.3934/jcd.2020002

[18]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial and Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[19]

Tomáš Roubíček, V. Mantič, C. G. Panagiotopoulos. A quasistatic mixed-mode delamination model. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 591-610. doi: 10.3934/dcdss.2013.6.591

[20]

Clelia Marchionna. Free vibrations in space of the single mode for the Kirchhoff string. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2947-2971. doi: 10.3934/cpaa.2013.12.2947

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]