\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Persistence and emergence of X4 virus in HIV infection

Abstract Related Papers Cited by
  • Approximately 50% of late-stage HIV patients develop CXCR4-tropic (X4) virus in addition to CCR5-tropic (R5) virus. X4 emergence occurs with a sharp decline in CD4+ T cell counts and accelerated time to AIDS. Why this phenotypic switch to X4 occurs is not well understood. Previously, we used numerical simulations of a mathematical model to show that across much of parameter space a promising new class of antiretroviral treatments, CCR5 inhibitors, can accelerate X4 emergence and immunodeficiency. Here, we show that mathematical model to be a minimal activation-based HIV model that produces a spontaneous switch to X4 virus at a clinically-representative time point, while also matching in vivo data showing X4 and R5 coexisting and competing to infect memory CD4+ T cells. Our analysis shows that X4 avoids competitive exclusion from an initially fitter R5 virus due to X4v unique ability to productively infect nave CD4+ T cells. We further justify the generalized conditions under which this minimal model holds, implying that a phenotypic switch can even occur when the fraction of activated nave CD4+ T cells increases at a slower rate than the fraction of activated memory CD4+ T cells. We find that it is the ratio of the fractions of activated nave and memory CD4+ T cells that must increase above a threshold to produce a switch. This occurs as the concentration of CD4+ T cells drops beneath a threshold. Thus, highly active antiretroviral therapy (HAART), which increases CD4+ T cell counts and decreases cellular activation levels, inhibits X4 viral growth. However, we show here that even in the simplest dual-strain framework, competition between R5 and X4 viruses often results in accelerated X4 emergence in response to CCR5 inhibition, further highlighting the potential danger of anti-CCR5 monotherapy in multi-strain HIV infection.
    Mathematics Subject Classification: Primary: 92C37, 92C45; Secondary: 92C50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Blaak, A. B. van't Wout, M. Brouwer, B. Hooibrink, E. Hovenkamp and H. Schuitemaker, In vivo HIV-1 infection of CD45RA(+)CD4(+) T cells is established primarily by syncytium-inducing variants and correlates with the rate of CD4(+) T cell decline, Proc. Natl. Acad. Sci. U.S.A., 97 (2000), 1269-1274.

    [2]

    D. S. Callaway, R. M. Ribeiro and M. A. Nowak, Virus phenotype switching and disease progression in HIV-1 infection, Proc. Roy. Sci. B, 266 (1999), 2523-2530.

    [3]

    C. H. Casper, P. Clevestig, E. Carlenor, T. Leitner, B. Anzén, K. Lidman, E. Belfrage, J. Albert, A. B. Bohlin, L. Navér, S. Lindgren, E. M. Fenyö and A. C. Ehrnst, Link between the X4 phenotype in human immunodeficiency virus type 1-infected mothers and their children, despite the early presence of R5 in the child, J. Infect. Dis., 186 (2002), 914-921.

    [4]

    L. A. Chakrabarti, S. R. Lewin, L. Zhang, A. Gettie, A. Luckay, L. N. Martin, E. Skulsky, D. D. Ho, C. Cheng-Mayer and P. A. Marx, Normal T-cell turnover in sooty mangabeys harboring active simian immunodeficiency virus infection, J. Virol., 74 (2000), 1209-1223.

    [5]

    H. Y. Chen, M. Di Mascio, A. S. Perelson, D. D. Ho and L. Zhang, Determination of virus burst size in vivo using a single-cycle SIV in rhesus macaques, Proc. Natl. Acad. Sci. U.S.A., 104 (2007), 19079-19084.

    [6]

    E. Coakley, C. J. Petropoulos and J. M. Whitcomb, Assessing chemokine co-receptor usage in HIV, Curr. Opin. Infect. Dis., 18 (2005), 9-15.

    [7]

    M. Cornelissen, G. Mulder-Kampinga, J. Veenstra, F. Zorgdrager, C. Kuiken, S. Hartman, J. Dekker, L. van der Hoek, C. Sol and R. Coutinho, Syncytium-inducing (SI) phenotype suppression at seroconversion after intramuscular inoculation of a non-syncytium-inducing/SI phenotypically mixed human immunodeficiency virus population, J. Virol., 69 (1995), 1810-1818.

    [8]

    M. P. Davenporta, J. J. Zaundersb, M. D. Hazenbergc, H. Schuitemakerc and R. P. van Rijc, Cell turnover and cell tropism in HIV-1 infection, Trends Microbiol., 10 (2002), 275-278.

    [9]

    P. Delobel, K. Sandres-Sauné, M. Cazabat, C. Pasquier, B. Marchou, P. Massip and J. Izopet, R5 to X4 switch of the predominant HIV-1 population in cellular reservoirs during effective highly active antiretroviral therapy, J. Acquir. Immune. Defic. Syndr., 38 (2005), 382-392.

    [10]

    D. C. Douek, Disrupting T-cell homeostasis: How HIV-1 infection causes disease, AIDS Rev., 5 (2003), 172-177.

    [11]

    D. C. Douek, L. J. Picker and R. A. Koup, T cell dynamics in HIV-1 infection, Annu. Rev. Immunol., 21 (2003), 265-304.

    [12]

    O. Equils, E. Garratty, L. S. Wei, S. Plaeger, M. Tapia, J. Deville, P. Krogstad, S. MyungShin, K. Nielsen and Y. J. Bryson, Recovery of replication-competent virus from CD4 T cell reservoirs and change in coreceptor use in human immunodeficiency virus type 1-infected children responding to highly active antiretroviral therapy, J. Infect. Dis., 182 (2000), 751-757.

    [13]

    J. M. Farber and E. A. Berger, HIV's response to a CCR5 inhibitor: I'd rather tighten than switch!, Proc. Natl. Acad. Sci. U.S.A., 99 (2002), 1749-1751.

    [14]

    J. V. Giorgi, L. E. Hultin, J. A. McKeating, T. D. Johnson, B. Owens, L. P. Jacobson, R. Shih, J. Lewis, D. J. Wiley, J. P. Phair, S. M. Wolinsky and R. Detels, Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage, J. Infect. Dis., 179 (1999), 859-870.

    [15]

    F. Gondois-Rey, A. Biancotto, M. A. Fernandez, L. Bettendroffer, J. Blazkova, K. Trejbalova, M. Pion and I. Hirsch, R5 variants of human immunodeficiency virus type 1 preferentially infect CD62L- CD4+ T cells and are potentially resistant to nucleoside reverse transcriptase inhibitors, J. Virol., 80 (2006), 854-865.

    [16]

    F. Gondois-Rey, J. C. Grivel, A. Biancotto, M. Pion, R. Vigne, L. B. Margolis and I. Hirsch, Segregation of R5 and X4 HIV-1 variants to memory T cell subsets differentially expressing CD62L in ex vivo infected human lymphoid tissue, AIDS, 16 (2002), 1245-1249.

    [17]

    A. T. Haase, Population biology of HIV-1 infection: Viral and CD4+ T cell demographics and dynamics in lymphatic tissues, Annu. Rev. Immunol., 17 (1999), 625-656.

    [18]

    A. T. Haase, K. Henry, M. Zupancic, G. Sedgewick, R. A. Faust, H. Melroe, W. Cavert, K. Gebhard, K. Staskus, Z. Q. Zhang, P. J. Dailey, H. H. Balfour Jr, A. Erice and A. S. Perelson, Quantitative image analysis of HIV-1 infection in lymphoid tissue, Science, 274 (1996), 985-989.

    [19]

    J. M. Harouse, C. Buckner, A. Gettie, R. Fuller, R. Bohm, J. Blanchard and C. Cheng-Mayer, CD8+ T cell-mediated CXC chemokine receptor 4-simian/human immunodeficiency virus suppression in dually infected rhesus macaques, Proc. Natl. Acad. Sci. U.S.A., 100 (2003), 10977-10982.

    [20]

    M. D. Hazenberg, S. A. Otto, J. W. Cohen Stuart, M. C. Verschuren, J. C. Borleffs, C. A. Boucher, R. A. Coutinho, J. M. Lange, T. F. Rinke de Wit, A. Tsegaye, J. J. van Dongen, D. Hamann, R. J. de Boer and F. Miedema, Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T cell population in HIV-1 infection, Nat. Med., 6 (2000), 1036-1042.

    [21]

    M. D. Hazenberg, S. A. Otto, D. Hamann, M. T. Roos, H. Schuitemaker, R. J. de Boer and F. Miedema, Depletion of naive CD4 T cells by CXCR4-using HIV-1 variants occurs mainly through increased T-cell death and activation, AIDS, 17 (2003), 1419-1424.

    [22]

    M. D. Hazenberg, S. A. Otto, B. H. van Benthem, M. T. Roos, R. A. Coutinho, J. M. Lange, D. Hamann, M. Prins and F. Miedema, Persistent immune activation in HIV-1 infection is associated with progression to AIDS, AIDS, 17 (2003), 1881-1888.

    [23]

    M. D. Hazenberg, J. W. Stuart, S. A. Otto, J. C. Borleffs, C. A. Boucher, R. J. de Boer, F. Miedema and D. Hamann, T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: A longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART), Blood, 95 (2000), 249-255.

    [24]

    R. L. Hengel, V. Thaker, M. V. Pavlick, J. A. Metcalf, G. Dennis Jr, J. Yang, R. A. Lempicki, I. Sereti and H. C. Lane, Cutting edge: L-selectin (CD62L) expression distinguishes small resting memory CD4+ T cells that preferentially respond to recall antigen, J. Immunol., 170 (2003), 28-32.

    [25]

    D. D. Ho, A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard and M. Markowitz, Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373 (1995), 123-126.

    [26]

    S. H. Ho, L. Shek, A. Gettie, J. Blanchard and C. Cheng-Mayer, V3 loop-determined coreceptor preference dictates the dynamics of CD4+-T-cell loss in simian-human immunodeficiency virus-infected macaques, J. Virol., 79 (2005), 12296-12303.

    [27]

    M. Joly and J. M. Pinto, CXCR4 and CCR5 regulation and expression patterns on T- and monocyte-macrophage cell lineages: Implications for susceptibility to infection by HIV-1, Math. Biosci., 195 (2005), 92-126.

    [28]

    E. E. Giorgi, J. F. Salazar-Gonzalez, J. M. Decker, K. T. Pham, M. G. Salazar, C. Sun, T. Grayson, S. Wang, H. Li, X. Wei, C. Jiang, J. L. Kirchherr, F. Gao, J. A. Anderson, L. H. Ping, R. Swanstrom, G. D. Tomaras, W. A. Blattner, P. A. Goepfert, J. M. Kilby, M. S. Saag, E. L. Delwart, M. P. Busch, M. S. Cohen, D. C. Montefiori, B. F. Haynes, B. Gaschen, G. S. Athreya, H. Y. Lee, N. Wood, C. Seoighe, A. S. Perelson, T. Bhattacharya, B. T. Korber, Hahn B. H. and G. M. Shaw, Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection, Proc. Natl. Acad. Sci. U.S.A., 105 (2008), 7552-7557.

    [29]

    B. Lee M. Sharron, L. J. Montaner, D. Weissman and R. W. Doms, Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages, Proc. Natl. Acad. Sci. U.S.A., 96 (1999), 5215-5220.

    [30]

    Q. Li, L. Duan, J. D. Estes, Z. M. Ma, T. Rourke, Y. Wang, C. Reilly, J. Carlis, C. J. Miller and A. T. Haase, Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells, Nature, 434 (2005), 1148-1152.

    [31]

    A. J. Low, W. Dong, D. Chan, T. Sing, R. Swanstrom, M. Jensen, S. Pillai, B. Good and P. R. Harrigan, Current V3 genotyping algorithms are inadequate for predicting X4 co-receptor usage in clinical isolates, Aids, 21 (2007), F17-24.

    [32]

    L. M. Mansky and H. M. Temin, Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase, J. Virol., 69 (1995), 5087-5094.

    [33]

    M. Markowitz, M. Louie, A. Hurley, E. Sun, M. Di Mascio, A. S. Perelson and D. D. Ho, A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo, J. Virol., 77 (2003), 5037-5038.

    [34]

    T. Melby, M. Despirito, R. Demasi, G. Heilek-Snyder, M. L. Greenberg and N. Graham, HIV-1 coreceptor use in triple-class treatment-experienced patients: Baseline prevalence, correlates, and relationship to enfuvirtide response, J. Infect. Dis., 194 (2006), 238-246.

    [35]

    H. Mohri, S. Bonhoeffer, S. Monard, A. S. Perelson and D. D. Ho, Rapid turnover of T lymphocytes in SIV-infected rhesus macaques, Science, 279 (1998), 1223-1227.

    [36]

    H. Mohri, A. S. Perelson, K. Tung, R. M. Ribeiro, B. Ramratnam, M. Markowitz, R. Kost, A. Hurley, L. Weinberger, D. Cesar, M. K. Hellerstein and D. D. Ho, Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy, J. Exp. Med., 194 (2001), 1277-1287.

    [37]

    J. P. Moore, S. G. Kitchen, P. Pugach and J. A. Zack, The CCR5 and CXCR4 coreceptors-central to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection, AIDS Res. Hum. Retroviruses., 20 (2004), 111-126.

    [38]

    M. Paiardini, I. Frank, I. Pandrea, C. Apetrei and G.Silvestri, Mucosal immune dysfunction in AIDS pathogenesis, AIDS Rev., 10 (2008), 36-46.

    [39]

    C. Pastore, R. Nedellec, A. Ramos, S. Pontow, L. Ratner and D. E. Mosier, Human immunodeficiency virus type 1 coreceptor switching: V1/V2 gain-of-fitness mutations compensate for V3 loss-of-fitness mutations, J. Virol., 80 (2006), 750-758.

    [40]

    M. L. Penn, J. C. Grivel, B. Schramm, M. A. Goldsmith and L. Margolis, CXCR4 utilization is sufficient to trigger CD4+ T cell depletion in HIV-1-infected human lymphoid tissue, Proc. Natl. Acad. Sci. U.S.A., 96 (1999), 663-668.

    [41]

    A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard and D. D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582-1586.

    [42]

    S. Philpott, B. Weiser, K. Anastos, C. M. Kitchen, E. Robison, W. A. Meyer, H. S. Sacks, U. Mathur-Wagh, C. Brunner and H. Burger, Preferential suppression of CXCR4-specific strains of HIV-1 by antiviral therapy, J. Clin. Invest., 107 (2001), 431-438.

    [43]

    B. Ramratnam, S. Bonhoeffer, J. Binley, A. Hurley, L. Zhang, J. E. Mittler, M. Markowitz, J. P. Moore, A. S. Perelson and D. D. Ho, Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis, Lancet, 354 (1999), 1782-1785.

    [44]

    R. Regoes and S. Bonhoeffer, HIV coreceptor usage and drug treatment, J. Theor. Biol., 217 (2002), 443-457.

    [45]

    R. R. Regoes and S. Bonhoeffer, The HIV coreceptor switch: A population dynamical perspective, Trends Microbiol., 13 (2005), 269-277.

    [46]

    R. M. Ribeiro, M. D. Hazenberg, A. S. Perelson and M. P. Davenport, Naive and memory cell turnover as drivers of CCR5-to-CXCR4 tropism switch in human immunodeficiency virus type 1: Implications for therapy, J. Virol., 80 (2006), 802-809.

    [47]

    D. D. Richman and S. A. Bozzette, The impact of the syncytium-inducing phenotype of human immunodeficiency virus on disease progression, J. Infect. Dis., 169 (1994), 968-974.

    [48]

    N. Sachsenberg, A. S. Perelson, S. Yerly, G. A. Schockmel, D. Leduc, B. Hirschel and L. Perrin, Turnover of CD4+ and CD8+ T lymphocytes in HIV-1 infection as measured by Ki-67 antigen, J. Exp. Med., 187 (1998), 1295-1303.

    [49]

    H. Schuitemaker, M. Koot, N. A. Kootstra, M. W. Dercksen, R. E. de Goede, R. P. van Steenwijk, J. M. Lange, J. K. Schattenkerk, F. Miedema and M. Tersmette, Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: Progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population, J. Virol., 66 (1992), 1354-1360.

    [50]

    G. Silvestri, Naturally SIV-infected sooty mangabeys: Are we closer to understanding why they do not develop AIDS?, J. Med. Primatol., 34 (2005), 243-252.

    [51]

    G. Silvestri, M. Paiardini, I. Pandrea, M. M. Lederman and D. L. Sodora, Understanding the benign nature of SIV infection in natural hosts, J. Clin. Invest., 117 (2007), 3148-3154.

    [52]

    G. Silvestri, D. L. Sodora, R. A. Koup, M. Paiardini, S. P. O'Neil, H. M. McClure, S. I. Staprans and M. B. Feinberg, Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia, Immunity, 18 (2003), 441-452.

    [53]

    K. Skrabal, V. Trouplin, B. Labrosse, V. Obry, F. Damond, A. J. Hance, F. Clavel and F. Mammano, Impact of antiretroviral treatment on the tropism of HIV-1 plasma virus populations, Aids, 17 (2003), 809-814.

    [54]

    I. J. Spijkerman, M. Koot, M. Prins, I. P. Keet, A. J. van den Hoek, F. Miedema and R. A. Coutinho, Lower prevalence and incidence of HIV-1 syncytium-inducing phenotype among injecting drug users compared with homosexual men, Aids, 9 (1995), 1085-1092.

    [55]

    A. Suarez, L. Mozo and C. Gutierrez, Generation of CD4(+)CD45RA(+) effector T cells by stimulation in the presence of cyclic adenosine 5'-monophosphate-elevating agents, J. Immunol., 169 (2002), 1159-1167.

    [56]

    J. C. Tilton, H. Amrine-Madsen, J. L. Miamidian, K. M. Kitrinos, J. Pfaff, J. F. Demarest, N. Ray, J. L. Jeffrey, C. C. Labranche and R. W. DomsHIV type 1 from a patient with baseline resistance to CCR5 antagonists uses drug-bound receptor for entry, AIDS Res. Hum. Retroviruses, 26, 13-24.

    [57]

    A. Trkola, S. E. Kuhmann, J. M. Strizki, E. Maxwell, T. Ketas, T. Morgan, P. Pugach, S. Xu, L. Wojcik, J. Tagat, A. Palani, S. Shapiro, J. W. Clader, S. McCombie, G. R. Reyes, B. M. Baroudy and J. P. Moore, HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use, Proc. Natl. Acad. Sci. U.S.A., 99 (2002), 395-400.

    [58]

    A. M. Tsibris and D. R. Kuritzkes, Chemokine antagonists as therapeutics: Focus on HIV-1, Annu. Rev. Med., 58 (2007), 445-459.

    [59]

    D. Unutmaz, F. Baldoni and S. Abrignani, Human naive T cells activated by cytokines differentiate into a split phenotype with functional features intermediate between naive and memory T cells, Int. Immunol., 7 (1995), 1417-1424.

    [60]

    D. Unutmaz, P. Pileri and S. Abrignani, Antigen-independent activation of naive and memory resting T cells by a cytokine combination, J. Exp. Med., 180 (1994), 1159-1164.

    [61]

    R. S. Veazey, K. G. Mansfield, I. C. Tham, A. C. Carville, D. E. Shvetz, A. E. Forand and A. A. Lackner, Dynamics of CCR5 expression by CD4(+) T cells in lymphoid tissues during simian immunodeficiency virus infection, J. Virol., 74 (2000), 11001-11007.

    [62]

    X. Wei, S. K. Ghosh, M. E. Taylor, V. A. Johnson, E. A. Emini, P. Deutsch, J. D. Lifson, S. Bonhoeffer, M. A. Nowak and B. H. Hahn, Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 373 (1995), 117-122.

    [63]

    A. D. Weinberger, A. S. Perelson, R. M. Ribeiro and L. S. Weinberger, Accelerated immunodeficiency by anti-CCR5 treatment in HIV infection, PLoS Comput. Biol., 5 (2009), e1000467.

    [64]

    L. S. Weinberger, D. V. Schaffer and A. P. Arkin, Theoretical design of a gene therapy to prevent AIDS but not human immunodeficiency virus type 1 infection, J. Virol., 77 (2003), 10028-10036.

    [65]

    M. Westby, M. Lewis, J. Whitcomb, M. Youle, A. L. Pozniak, I. T. James, T. M. Jenkins, M. Perros and E. van der Ryst, Emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1) variants in a minority of HIV-1-infected patients following treatment with the CCR5 antagonist maraviroc is from a pretreatment CXCR4-using virus reservoir, J. Virol., 80 (2006), 4909-4920.

    [66]

    M. Westby and E. van der Ryst, CCR5 antagonists: Host-targeted antivirals for the treatment of HIV infection, Antivir. Chem. Chemother., 16 (2005), 339-354.

    [67]

    D. Wodarz, A. L. Lloyd, V. A. Jansen and M. A.Nowak, Dynamics of macrophage and T cell infection by HIV, J. Theor. Biol., 196 (1999), 101-113.

    [68]

    D. Wodarz and M. A. Nowak, The effect of different immune responses on the evolution of virulent CXCR4-tropic HIV, Proc. Roy. Sci. B, 265 (1998), 2149-2158.

    [69]

    S. M. Wolinsky, R. S. Veazey, K. J. Kunstman, P. J. Klasse, J. Dufour, A. J. Marozsan, M. S. Springer and J. P. Moore, Effect of a CCR5 inhibitor on viral loads in macaques dual-infected with R5 and X4 primate immunodeficiency viruses, Virology, 328 (2004), 19-29.

    [70]

    Z. Q. Zhang, S. W. Wietgrefe, Q. Li, M. D. Shore, L. Duan, C. Reilly, J. D. Lifson and A. T. Haase, Roles of substrate availability and infection of resting and activated CD4+ T cells in transmission and acute simian immunodeficiency virus infection, Proc. Natl. Acad. Sci. USA, 101 (2004), 5640-5645.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(36) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return