-
Previous Article
A simple analysis of vaccination strategies for rubella
- MBE Home
- This Issue
- Next Article
A note on the replicator equation with explicit space and global regulation
1. | Applied Mathematics–1, Moscow State University of Railway Engineering, Obraztsova 9, Moscow, 127994, Russian Federation, Russian Federation, Russian Federation |
References:
[1] |
M. Boerlijst and P. Hogeweg, Self-structuring and selection: Spiral waves as a substrate for prebiotic evolution,, Artificial Life, 2 (1991), 255. Google Scholar |
[2] |
M. C. Boerlijst and P. Hogeweg, Spiral wave structure in pre-biotic evolution: Hypercycles stable against parasites,, Physica D, 48 (1991), 17.
doi: 10.1016/0167-2789(91)90049-F. |
[3] |
A. S. Bratus and E. N. Lukasheva, Stability and the limit behavior of the open distributed hypercycle system,, Differential Equations, 45 (2009), 1564. Google Scholar |
[4] |
A. S. Bratus, A. S. Novozhilov and A. P. Platonov, "Dynamical Systems and Models in Biology,", "Dynamical Systems and Models in Biology,", (2010). Google Scholar |
[5] |
A. S. Bratus and V. P. Posvyanskii, Stationary solutions in a closed distributed Eigen-Schuster evolution system,, Differential Equations, 42 (2006), 1762. Google Scholar |
[6] |
A. S. Bratus, V. P. Posvyanskii and A. S. Novozhilov, Existence and stability of stationary solutions to spatially extended autocatalytic and hypercyclic systems under global regulation and with nonlinear growth rates,, Nonlinear Analysis: Real World Applications, 11 (2010), 1897.
|
[7] |
R. S. Cantrell and C. Cosner, "Spatial Ecology via Reaction-Diffusion Equations,", Wiley Series in Mathematical and Computational Biology, (2003).
|
[8] |
R. Cressman, "Evolutionary Dynamics and Extensive Form Games,", MIT Press Series on Economic Learning and Social Evolution, 5 (2003).
|
[9] |
R. Cressman and G. T. Vickers, Spatial and density effects in evolutionary game theory,, Journal of Theoretical Biology, 184 (1997), 359.
doi: 10.1006/jtbi.1996.0251. |
[10] |
M. B. Cronhjort and C. Blomberg, Hypercycles versus parasites in a two dimensional partial differential equation model,, Journal of Theoretical Biology, 169 (1994), 31.
doi: 10.1006/jtbi.1994.1128. |
[11] |
U. Dieckmann, R. Law and J. A. J. Metz, editors, "The Geometry of Ecological Interactions: Simplifying Spatial Complexity,", Cambridge Studies in Adaptive Dynamics, 1 (2005).
|
[12] |
M. Eigen and P. Schuster, The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle,, Naturwissenschaften, 64 (1977), 541.
doi: 10.1007/BF00450633. |
[13] |
R. Ferriere and R. E. Michod, Wave patterns in spatial games and the evolution of cooperation,, The Geometry of Ecological Interactions: Simplifying Spatial Complexity, (2000), 318.
doi: 10.1017/CBO9780511525537.020. |
[14] |
R. A. Fisher, The wave of advance of advantageous genes,, Annals of Eugenics, 7 (1937), 353.
doi: 10.1111/j.1469-1809.1937.tb02153.x. |
[15] |
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Applied Mathematical Sciences, 42 (1990).
|
[16] |
K. P. Hadeler, Diffusion in Fisher's population model,, Rocky Mountain Journal of Mathematics, 11 (1981), 39.
doi: 10.1216/RMJ-1981-11-1-39. |
[17] |
J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics,", Cambridge University Press, (1998).
|
[18] |
J. Hofbauer and K. Sigmund, Evolutionary game dynamics,, Bulletin of American Mathematical Society, 40 (2003), 479.
doi: 10.1090/S0273-0979-03-00988-1. |
[19] |
V. C. L. Hutson and G. T. Vickers, The spatial struggle of tit-for-tat and defect,, Philosophical Transactions of the Royal Society. Series B: Biological Sciences, 348 (1995), 393.
doi: 10.1098/rstb.1995.0077. |
[20] |
G. P. Karev, On mathematical theory of selection: Continuous time population dynamics,, Journal of Mathematical Biology, 60 (2010), 107.
|
[21] |
G. P. Karev, A. S. Novozhilov and F. S. Berezovskaya, On the asymptotic behavior of the solutions to the replicator equation,, Mathematical Medicine and Biology, (2010). Google Scholar |
[22] |
J. Maynard Smith, "Evolution and the Theory of Games,", Cambridge University Press, (1982). Google Scholar |
[23] |
J. Maynard Smith and G. R. Price, The logic of animal conflict,, Nature, 246 (1973), 15.
doi: 10.1038/246015a0. |
[24] |
S. G. Mikhlin, "Variational Methods in Mathematical Physics,", A Pergamon Press Book, (1964).
|
[25] |
P. Schuster and K. Sigmund, Replicator dynamics,, Journal of Theoretical Biology, 100 (1983), 533.
doi: 10.1016/0022-5193(83)90445-9. |
[26] |
Y. M. Svirezhev and V. P. Passekov, "Fundamentals of Mathematical Evolutionary Genetics,", Mathematics and its Applications (Soviet Series), 22 (1990).
|
[27] |
P. Taylor and L. Jonker, Evolutionarily stable strategies and game dynamics,, Mathematical Biosciences, 40 (1978), 145.
doi: 10.1016/0025-5564(78)90077-9. |
[28] |
G. T. Vickers, Spatial patterns and ESS's,, Journal of Theoretical Biology, 140 (1989), 129.
doi: 10.1016/S0022-5193(89)80033-5. |
[29] |
E. D. Weinberger, Spatial stability analysis of Eigen's quasispecies model and the less than five membered hypercycle under global population regulation,, Bulletin of Mathematical Biology, 53 (1991), 623. Google Scholar |
show all references
References:
[1] |
M. Boerlijst and P. Hogeweg, Self-structuring and selection: Spiral waves as a substrate for prebiotic evolution,, Artificial Life, 2 (1991), 255. Google Scholar |
[2] |
M. C. Boerlijst and P. Hogeweg, Spiral wave structure in pre-biotic evolution: Hypercycles stable against parasites,, Physica D, 48 (1991), 17.
doi: 10.1016/0167-2789(91)90049-F. |
[3] |
A. S. Bratus and E. N. Lukasheva, Stability and the limit behavior of the open distributed hypercycle system,, Differential Equations, 45 (2009), 1564. Google Scholar |
[4] |
A. S. Bratus, A. S. Novozhilov and A. P. Platonov, "Dynamical Systems and Models in Biology,", "Dynamical Systems and Models in Biology,", (2010). Google Scholar |
[5] |
A. S. Bratus and V. P. Posvyanskii, Stationary solutions in a closed distributed Eigen-Schuster evolution system,, Differential Equations, 42 (2006), 1762. Google Scholar |
[6] |
A. S. Bratus, V. P. Posvyanskii and A. S. Novozhilov, Existence and stability of stationary solutions to spatially extended autocatalytic and hypercyclic systems under global regulation and with nonlinear growth rates,, Nonlinear Analysis: Real World Applications, 11 (2010), 1897.
|
[7] |
R. S. Cantrell and C. Cosner, "Spatial Ecology via Reaction-Diffusion Equations,", Wiley Series in Mathematical and Computational Biology, (2003).
|
[8] |
R. Cressman, "Evolutionary Dynamics and Extensive Form Games,", MIT Press Series on Economic Learning and Social Evolution, 5 (2003).
|
[9] |
R. Cressman and G. T. Vickers, Spatial and density effects in evolutionary game theory,, Journal of Theoretical Biology, 184 (1997), 359.
doi: 10.1006/jtbi.1996.0251. |
[10] |
M. B. Cronhjort and C. Blomberg, Hypercycles versus parasites in a two dimensional partial differential equation model,, Journal of Theoretical Biology, 169 (1994), 31.
doi: 10.1006/jtbi.1994.1128. |
[11] |
U. Dieckmann, R. Law and J. A. J. Metz, editors, "The Geometry of Ecological Interactions: Simplifying Spatial Complexity,", Cambridge Studies in Adaptive Dynamics, 1 (2005).
|
[12] |
M. Eigen and P. Schuster, The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle,, Naturwissenschaften, 64 (1977), 541.
doi: 10.1007/BF00450633. |
[13] |
R. Ferriere and R. E. Michod, Wave patterns in spatial games and the evolution of cooperation,, The Geometry of Ecological Interactions: Simplifying Spatial Complexity, (2000), 318.
doi: 10.1017/CBO9780511525537.020. |
[14] |
R. A. Fisher, The wave of advance of advantageous genes,, Annals of Eugenics, 7 (1937), 353.
doi: 10.1111/j.1469-1809.1937.tb02153.x. |
[15] |
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Applied Mathematical Sciences, 42 (1990).
|
[16] |
K. P. Hadeler, Diffusion in Fisher's population model,, Rocky Mountain Journal of Mathematics, 11 (1981), 39.
doi: 10.1216/RMJ-1981-11-1-39. |
[17] |
J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics,", Cambridge University Press, (1998).
|
[18] |
J. Hofbauer and K. Sigmund, Evolutionary game dynamics,, Bulletin of American Mathematical Society, 40 (2003), 479.
doi: 10.1090/S0273-0979-03-00988-1. |
[19] |
V. C. L. Hutson and G. T. Vickers, The spatial struggle of tit-for-tat and defect,, Philosophical Transactions of the Royal Society. Series B: Biological Sciences, 348 (1995), 393.
doi: 10.1098/rstb.1995.0077. |
[20] |
G. P. Karev, On mathematical theory of selection: Continuous time population dynamics,, Journal of Mathematical Biology, 60 (2010), 107.
|
[21] |
G. P. Karev, A. S. Novozhilov and F. S. Berezovskaya, On the asymptotic behavior of the solutions to the replicator equation,, Mathematical Medicine and Biology, (2010). Google Scholar |
[22] |
J. Maynard Smith, "Evolution and the Theory of Games,", Cambridge University Press, (1982). Google Scholar |
[23] |
J. Maynard Smith and G. R. Price, The logic of animal conflict,, Nature, 246 (1973), 15.
doi: 10.1038/246015a0. |
[24] |
S. G. Mikhlin, "Variational Methods in Mathematical Physics,", A Pergamon Press Book, (1964).
|
[25] |
P. Schuster and K. Sigmund, Replicator dynamics,, Journal of Theoretical Biology, 100 (1983), 533.
doi: 10.1016/0022-5193(83)90445-9. |
[26] |
Y. M. Svirezhev and V. P. Passekov, "Fundamentals of Mathematical Evolutionary Genetics,", Mathematics and its Applications (Soviet Series), 22 (1990).
|
[27] |
P. Taylor and L. Jonker, Evolutionarily stable strategies and game dynamics,, Mathematical Biosciences, 40 (1978), 145.
doi: 10.1016/0025-5564(78)90077-9. |
[28] |
G. T. Vickers, Spatial patterns and ESS's,, Journal of Theoretical Biology, 140 (1989), 129.
doi: 10.1016/S0022-5193(89)80033-5. |
[29] |
E. D. Weinberger, Spatial stability analysis of Eigen's quasispecies model and the less than five membered hypercycle under global population regulation,, Bulletin of Mathematical Biology, 53 (1991), 623. Google Scholar |
[1] |
Takanori Ide, Kazuhiro Kurata, Kazunaga Tanaka. Multiple stable patterns for some reaction-diffusion equation in disrupted environments. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 93-116. doi: 10.3934/dcds.2006.14.93 |
[2] |
Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39 |
[3] |
M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079 |
[4] |
Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure & Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319 |
[5] |
Elvio Accinelli, Bruno Bazzano, Franco Robledo, Pablo Romero. Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation. Journal of Dynamics & Games, 2015, 2 (1) : 1-32. doi: 10.3934/jdg.2015.2.1 |
[6] |
Peter Poláčik, Eiji Yanagida. Stable subharmonic solutions of reaction-diffusion equations on an arbitrary domain. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 209-218. doi: 10.3934/dcds.2002.8.209 |
[7] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116 |
[8] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017 |
[9] |
Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515 |
[10] |
Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304 |
[11] |
A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65 |
[12] |
Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382 |
[13] |
Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085 |
[14] |
María del Mar González, Regis Monneau. Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1255-1286. doi: 10.3934/dcds.2012.32.1255 |
[15] |
Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 49-59. doi: 10.3934/dcdss.2012.5.49 |
[16] |
Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246 |
[17] |
Yuri Latushkin, Roland Schnaubelt, Xinyao Yang. Stable foliations near a traveling front for reaction diffusion systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3145-3165. doi: 10.3934/dcdsb.2017168 |
[18] |
Wenrui Hao, Jonathan D. Hauenstein, Bei Hu, Yuan Liu, Andrew J. Sommese, Yong-Tao Zhang. Multiple stable steady states of a reaction-diffusion model on zebrafish dorsal-ventral patterning. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1413-1428. doi: 10.3934/dcdss.2011.4.1413 |
[19] |
Michele V. Bartuccelli, S.A. Gourley, Y. Kyrychko. Comparison and convergence to equilibrium in a nonlocal delayed reaction-diffusion model on an infinite domain. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1015-1026. doi: 10.3934/dcdsb.2005.5.1015 |
[20] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]