• Previous Article
    Persistent high incidence of tuberculosis among immigrants in a low-incidence country: Impact of immigrants with early or late latency
  • MBE Home
  • This Issue
  • Next Article
    A simple analysis of vaccination strategies for rubella
2011, 8(3): 689-694. doi: 10.3934/mbe.2011.8.689

A note for the global stability of a delay differential equation of hepatitis B virus infection

1. 

Academy of Mathematics and Systems Science, Academia Sinica, Beijing 100190, China, China

Received  September 2010 Revised  October 2010 Published  June 2011

The global stability for a delayed HIV-1 infection model is investigated. It is shown that the global dynamics of the system can be completely determined by the reproduction number, and the chronic infected equilibrium of the system is globally asymptotically stable whenever it exists. This improves the related results presented in [S. A. Gourley,Y. Kuang and J.D.Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, Journal of Biological Dynamics, 2(2008), 140-153].
Citation: Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689
References:
[1]

S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, J. Biol. Dyn., 2 (2008), 140-153. doi: 10.1080/17513750701769873.

[2]

G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response, Appl. Math. Lett., 22 (2009), 1690-1693. doi: 10.1016/j.aml.2009.06.004.

[3]

G. Huang, Y. Takeuchi and W. Ma, Lyapunov functional for delay differential equations model of viral infections, SIAM J. Appl. Math., 70 (2010), 2693-2708. doi: 10.1137/090780821.

[4]

G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192-1207. doi: 10.1007/s11538-009-9487-6.

[5]

A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883. doi: 10.1016/j.bulm.2004.02.001.

[6]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871-1886. doi: 10.1007/s11538-007-9196-y.

[7]

A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS models epidemic models, Math. Med. Biol., 21 (2004), 75-83. doi: 10.1093/imammb/21.2.75.

[8]

A. Korobeinikov and G. C. Wake, Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models, Appl. Math. Lett., 15 (2002), 955-960. doi: 10.1016/S0893-9659(02)00069-1.

[9]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay, Bull. Math. Biol., 72 (2010), 1492-1505. doi: 10.1007/s11538-010-9503-x.

[10]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. Math., 70 (2010), 2434-2448. doi: 10.1137/090779322.

[11]

C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 6 (2009), 603-610. doi: 10.3934/mbe.2009.6.603.

[12]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete, Nonlinear. Anal. Real World Appl., 11 (2010), 55-59. doi: 10.1016/j.nonrwa.2008.10.014.

[13]

L. Min, Y. Su and Y. Kuang, Mathematical analysis of a basic virus infection model with application to HBV infection, Rocky. Mount. J. Math., 38 (2008), 1573-1585. doi: 10.1216/RMJ-2008-38-5-1573.

[14]

M. A. Nowak, S. Bonhoeffer, A. M. Hill, R. Boehme, H. C. Thomas and H. McDade, Viral dynamics in hepatitis B virus infection, Proc. Nat. Acad. Sci. USA, 93 (1996), 4398-4402. doi: 10.1073/pnas.93.9.4398.

[15]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79. doi: 10.1126/science.272.5258.74.

show all references

References:
[1]

S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, J. Biol. Dyn., 2 (2008), 140-153. doi: 10.1080/17513750701769873.

[2]

G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response, Appl. Math. Lett., 22 (2009), 1690-1693. doi: 10.1016/j.aml.2009.06.004.

[3]

G. Huang, Y. Takeuchi and W. Ma, Lyapunov functional for delay differential equations model of viral infections, SIAM J. Appl. Math., 70 (2010), 2693-2708. doi: 10.1137/090780821.

[4]

G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192-1207. doi: 10.1007/s11538-009-9487-6.

[5]

A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883. doi: 10.1016/j.bulm.2004.02.001.

[6]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871-1886. doi: 10.1007/s11538-007-9196-y.

[7]

A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS models epidemic models, Math. Med. Biol., 21 (2004), 75-83. doi: 10.1093/imammb/21.2.75.

[8]

A. Korobeinikov and G. C. Wake, Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models, Appl. Math. Lett., 15 (2002), 955-960. doi: 10.1016/S0893-9659(02)00069-1.

[9]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay, Bull. Math. Biol., 72 (2010), 1492-1505. doi: 10.1007/s11538-010-9503-x.

[10]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. Math., 70 (2010), 2434-2448. doi: 10.1137/090779322.

[11]

C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 6 (2009), 603-610. doi: 10.3934/mbe.2009.6.603.

[12]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete, Nonlinear. Anal. Real World Appl., 11 (2010), 55-59. doi: 10.1016/j.nonrwa.2008.10.014.

[13]

L. Min, Y. Su and Y. Kuang, Mathematical analysis of a basic virus infection model with application to HBV infection, Rocky. Mount. J. Math., 38 (2008), 1573-1585. doi: 10.1216/RMJ-2008-38-5-1573.

[14]

M. A. Nowak, S. Bonhoeffer, A. M. Hill, R. Boehme, H. C. Thomas and H. McDade, Viral dynamics in hepatitis B virus infection, Proc. Nat. Acad. Sci. USA, 93 (1996), 4398-4402. doi: 10.1073/pnas.93.9.4398.

[15]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79. doi: 10.1126/science.272.5258.74.

[1]

Ting Guo, Haihong Liu, Chenglin Xu, Fang Yan. Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4223-4242. doi: 10.3934/dcdsb.2018134

[2]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[3]

Songbai Guo, Wanbiao Ma. Global dynamics of a microorganism flocculation model with time delay. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1883-1891. doi: 10.3934/cpaa.2017091

[4]

Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1159-1167. doi: 10.3934/dcdsb.2019214

[5]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, 2021, 29 (4) : 2599-2618. doi: 10.3934/era.2021003

[6]

C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837

[7]

C. Connell McCluskey. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2009, 6 (3) : 603-610. doi: 10.3934/mbe.2009.6.603

[8]

Yincui Yan, Wendi Wang. Global stability of a five-dimensional model with immune responses and delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 401-416. doi: 10.3934/dcdsb.2012.17.401

[9]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Taza Gul, Fawad Hussain. A fractional order HBV model with hospitalization. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 957-974. doi: 10.3934/dcdss.2020056

[10]

Sibel Senan, Eylem Yucel, Zeynep Orman, Ruya Samli, Sabri Arik. A Novel Lyapunov functional with application to stability analysis of neutral systems with nonlinear disturbances. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1415-1428. doi: 10.3934/dcdss.2020358

[11]

Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393

[12]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[13]

Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1083-1106. doi: 10.3934/mbe.2015.12.1083

[14]

Jinliang Wang, Lijuan Guan. Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 297-302. doi: 10.3934/dcdsb.2012.17.297

[15]

Sze-Bi Hsu, Ming-Chia Li, Weishi Liu, Mikhail Malkin. Heteroclinic foliation, global oscillations for the Nicholson-Bailey model and delay of stability loss. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1465-1492. doi: 10.3934/dcds.2003.9.1465

[16]

Nabil T. Fadai, Michael J. Ward, Juncheng Wei. A time-delay in the activator kinetics enhances the stability of a spike solution to the gierer-meinhardt model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1431-1458. doi: 10.3934/dcdsb.2018158

[17]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks and Heterogeneous Media, 2021, 16 (1) : 31-47. doi: 10.3934/nhm.2020032

[18]

Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023

[19]

Junyoung Jang, Kihoon Jang, Hee-Dae Kwon, Jeehyun Lee. Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences & Engineering, 2018, 15 (3) : 667-691. doi: 10.3934/mbe.2018030

[20]

Xichao Duan, Sanling Yuan, Kaifa Wang. Dynamics of a diffusive age-structured HBV model with saturating incidence. Mathematical Biosciences & Engineering, 2016, 13 (5) : 935-968. doi: 10.3934/mbe.2016024

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]