2011, 8(3): 711-722. doi: 10.3934/mbe.2011.8.711

Modeling the effects of carriers on transmission dynamics of infectious diseases

1. 

Department of Mathematics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

2. 

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada

Received  September 2010 Revised  March 2011 Published  June 2011

An $S$-$I_c$-$I$-$R$ epidemic model is investigated for infectious diseases that can be transmitted through carriers, infected individuals who are contagious but do not show any disease symptoms. Mathematical analysis is carried out that completely determines the global dynamics of the model. The impacts of disease carriers on the transmission dynamics are discussed through the basic reproduction number and through numerical simulations.
Citation: Darja Kalajdzievska, Michael Yi Li. Modeling the effects of carriers on transmission dynamics of infectious diseases. Mathematical Biosciences & Engineering, 2011, 8 (3) : 711-722. doi: 10.3934/mbe.2011.8.711
References:
[1]

M. Ghosh, P. Chandra, P. Sinha and J. B. Shukla, Modelling the spread of carrier-dependent infectious diseases with environmental effect, Appl. Math. Comput., 152 (2004), 385-402. doi: 10.1016/S0096-3003(03)00564-2.

[2]

S. Goldstein, F. Zhou, S. C. Hadler, B. P. Bell, E. E. Mast and H. S. Margolis, A mathematical model to estimate global hepatits B disease burden and vaccination impact, Int. J. Epidemiol., 34 (2005), 1329-1339. doi: 10.1093/ije/dyi206.

[3]

H. Guo, Global dynamics of a mathematical model of tuberculosis, Canadian Appl. Math. Quart., 13 (2005), 313-323.

[4]

H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases, Math. Biosci. Eng., 3 (2006), 513-525.

[5]

J. M. Hyman and J. Li, Differential susceptibility and infectivity epidemic models, Math. Biosci. Eng., 3 (2006), 89-100.

[6]

D. Kalajdzievska, "Modeling the Effects of Carriers on the Transmission Dynamics of Infectious Diseases," M.Sc. thesis, University of Alberta, 2006.

[7]

J. T. Kemper, The effects of asymptotic attacks on the spread of infectious disease: A deterministic model, Bull. Math. Bio., 40 (1978), 707-718.

[8]

A. Korobeinikov and P. K. Maini, A Lyaponov function and global properties for SIR and SEIR epedimiological models with nonlinear incidence, Math. Biosci. Eng., 1 (2004), 57-60.

[9]

J. P. LaSalle, "The Stability of Dynamical Systems," Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976.

[10]

G. F. Medley, N. A. Lindop, W. J. Edmunds and D. J. Nokes, Hepatitis-B virus edemicity: Heterogeneity, catastrophic dynamics and control, Nat. Med., 7 (2001), 617-624. doi: 10.1038/87953.

[11]

R. Naresh, S. Pandey and A. K. Misra, Analysis of a vaccination model for carrier dependent infectious diseases with environmental effects, Nonlinear Analysis: Modelling and Control, 13 (2008), 331-350.

[12]

M. M. Riggs, A. K. Sethi, T. F. Zabarsky, E. C. Eckstein, R. L. Jump and C. J. Donskey, Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents, Clin. Infect. Dis., 45 (2007), 992-998. doi: 10.1086/521854.

[13]

P. Roumagnac, et al., Evolutionary history of Salmonella typhi, Science, 314 (2006), 1301-1304. doi: 10.1126/science.1134933.

[14]

C. L. Trotter, N. J. Gay and W. J. Edmunds, Dynamic models of meningococcal carriage, disease, and the impact of serogroup C conjugate vaccination, Am. J. Epidemiol., 162 (2005), 89-100. doi: 10.1093/aje/kwi160.

[15]

S. Zhao, Z. Xu and Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China, Int. J. Epidemiol., 29 (2000), 744-752. doi: 10.1093/ije/29.4.744.

[16]

"The ABCs of Hepatitis,", Center for Disease Control and Prevention (CDC), 2009., Available from: \url{http://www.cdc.gov/hepatitis/Resources/Professionals/PDFs/ABCTable_BW.pdf}., 2009 (). 

[17]

"Viral Hepatitis and Emerging Bloodborne Pathogens in Canada,", CCDR, 27S3, Public Health Agency of Canada (PHAC), 2001.

[18]

WHO, "Fact Sheet on Hepatitis B," 2008., Available from: \url{http://www.who.int/mediacentre/factsheets/fs204/en/index.html}., 2008 (). 

show all references

References:
[1]

M. Ghosh, P. Chandra, P. Sinha and J. B. Shukla, Modelling the spread of carrier-dependent infectious diseases with environmental effect, Appl. Math. Comput., 152 (2004), 385-402. doi: 10.1016/S0096-3003(03)00564-2.

[2]

S. Goldstein, F. Zhou, S. C. Hadler, B. P. Bell, E. E. Mast and H. S. Margolis, A mathematical model to estimate global hepatits B disease burden and vaccination impact, Int. J. Epidemiol., 34 (2005), 1329-1339. doi: 10.1093/ije/dyi206.

[3]

H. Guo, Global dynamics of a mathematical model of tuberculosis, Canadian Appl. Math. Quart., 13 (2005), 313-323.

[4]

H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases, Math. Biosci. Eng., 3 (2006), 513-525.

[5]

J. M. Hyman and J. Li, Differential susceptibility and infectivity epidemic models, Math. Biosci. Eng., 3 (2006), 89-100.

[6]

D. Kalajdzievska, "Modeling the Effects of Carriers on the Transmission Dynamics of Infectious Diseases," M.Sc. thesis, University of Alberta, 2006.

[7]

J. T. Kemper, The effects of asymptotic attacks on the spread of infectious disease: A deterministic model, Bull. Math. Bio., 40 (1978), 707-718.

[8]

A. Korobeinikov and P. K. Maini, A Lyaponov function and global properties for SIR and SEIR epedimiological models with nonlinear incidence, Math. Biosci. Eng., 1 (2004), 57-60.

[9]

J. P. LaSalle, "The Stability of Dynamical Systems," Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976.

[10]

G. F. Medley, N. A. Lindop, W. J. Edmunds and D. J. Nokes, Hepatitis-B virus edemicity: Heterogeneity, catastrophic dynamics and control, Nat. Med., 7 (2001), 617-624. doi: 10.1038/87953.

[11]

R. Naresh, S. Pandey and A. K. Misra, Analysis of a vaccination model for carrier dependent infectious diseases with environmental effects, Nonlinear Analysis: Modelling and Control, 13 (2008), 331-350.

[12]

M. M. Riggs, A. K. Sethi, T. F. Zabarsky, E. C. Eckstein, R. L. Jump and C. J. Donskey, Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents, Clin. Infect. Dis., 45 (2007), 992-998. doi: 10.1086/521854.

[13]

P. Roumagnac, et al., Evolutionary history of Salmonella typhi, Science, 314 (2006), 1301-1304. doi: 10.1126/science.1134933.

[14]

C. L. Trotter, N. J. Gay and W. J. Edmunds, Dynamic models of meningococcal carriage, disease, and the impact of serogroup C conjugate vaccination, Am. J. Epidemiol., 162 (2005), 89-100. doi: 10.1093/aje/kwi160.

[15]

S. Zhao, Z. Xu and Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China, Int. J. Epidemiol., 29 (2000), 744-752. doi: 10.1093/ije/29.4.744.

[16]

"The ABCs of Hepatitis,", Center for Disease Control and Prevention (CDC), 2009., Available from: \url{http://www.cdc.gov/hepatitis/Resources/Professionals/PDFs/ABCTable_BW.pdf}., 2009 (). 

[17]

"Viral Hepatitis and Emerging Bloodborne Pathogens in Canada,", CCDR, 27S3, Public Health Agency of Canada (PHAC), 2001.

[18]

WHO, "Fact Sheet on Hepatitis B," 2008., Available from: \url{http://www.who.int/mediacentre/factsheets/fs204/en/index.html}., 2008 (). 

[1]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[2]

Connell McCluskey. Lyapunov functions for disease models with immigration of infected hosts. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4479-4491. doi: 10.3934/dcdsb.2020296

[3]

Qingming Gou, Wendi Wang. Global stability of two epidemic models. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 333-345. doi: 10.3934/dcdsb.2007.8.333

[4]

Jing-Jing Xiang, Juan Wang, Li-Ming Cai. Global stability of the dengue disease transmission models. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2217-2232. doi: 10.3934/dcdsb.2015.20.2217

[5]

Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369

[6]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (2) : 347-361. doi: 10.3934/mbe.2010.7.347

[7]

Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053

[8]

Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631

[9]

C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603

[10]

Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116

[11]

Jinliang Wang, Xianning Liu, Toshikazu Kuniya, Jingmei Pang. Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2795-2812. doi: 10.3934/dcdsb.2017151

[12]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 61-74. doi: 10.3934/dcdsb.2011.15.61

[13]

Attila Dénes, Gergely Röst. Global stability for SIR and SIRS models with nonlinear incidence and removal terms via Dulac functions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1101-1117. doi: 10.3934/dcdsb.2016.21.1101

[14]

Hiroshi Ito, Michael Malisoff, Frédéric Mazenc. Strict Lyapunov functions and feedback controls for SIR models with quarantine and vaccination. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022029

[15]

Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172

[16]

Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101

[17]

Tsuyoshi Kajiwara, Toru Sasaki, Yasuhiro Takeuchi. Construction of Lyapunov functions for some models of infectious diseases in vivo: From simple models to complex models. Mathematical Biosciences & Engineering, 2015, 12 (1) : 117-133. doi: 10.3934/mbe.2015.12.117

[18]

Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119

[19]

Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567

[20]

C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (129)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]