2011, 8(3): 723-732. doi: 10.3934/mbe.2011.8.723

Optimal nutritional intake for fetal growth

1. 

Department of Mathematics, Mahidol University, Bangkok 10400, Thailand & National Research Centre for Growth and Development, Auckland, New Zealand

2. 

National Research Centre for Growth and Development & Institute of Information and Mathematical Sciences, Massey University, Private Bag 102904, Albany, Auckland

3. 

Institute of Information and Mathematical Sciences, Massey University, Private Bag 102904, Albany, Auckland, New Zealand

4. 

Department of Mathematics, Mahidol University, Bangkok 10400, Thailand & Center of Excellence in Mathematics,, PERDO Commission on Higher Education, Si Ayudhya Rd., Bangkok 10400, New Zealand

Received  August 2010 Revised  November 2010 Published  June 2011

The regular nutritional intake of an expectant mother clearly affects the weight development of the fetus. Assuming the growth of the fetus follows a deterministic growth law, like a logistic equation, albeit dependent on the nutritional intake, the ideal solution is usually determined by the birth-weight being pre-assigned, for example, as a percentage of the mother's average weight. This problem can then be specified as an optimal control problem with the daily intake as the control, which appears in a Michaelis-Menten relationship, for which there are well-developed procedures to follow. The best solution is determined by requiring minimum total intake under which the preassigned birth weight is reached. The algorithm has been generalized to the case where the fetal weight depends in a detailed way on the cumulative intake, suitably discounted according to the history. The optimality system is derived and then solved numerically using an iterative method for the specific values of parameter. The procedure is generic and can be adapted to any growth law and any parameterisation obtained by the detailed physiology.
Citation: Chanakarn Kiataramkul, Graeme Wake, Alona Ben-Tal, Yongwimon Lenbury. Optimal nutritional intake for fetal growth. Mathematical Biosciences & Engineering, 2011, 8 (3) : 723-732. doi: 10.3934/mbe.2011.8.723
References:
[1]

C. W. Clark, "Bioeconomics: The Optimal Management of Renewable Resources,", Wiley, (1976).   Google Scholar

[2]

H. R. Joshi, Optimal control of an HIV immunology model,, Optim. Control Appl. Methods, 23 (2002), 199.  doi: 10.1002/oca.710.  Google Scholar

[3]

E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model,, Discrete and Continuous Dynamical Systems-Series B, 2 (2002), 473.  doi: 10.3934/dcdsb.2002.2.473.  Google Scholar

[4]

K. L. Gatford, J. A. Owens, S. Li, T. J. M. Moss, J. P. Newnham, J. R. G. Challis and D. M. Sloboda, Repeated betamethasone treatment of pregnant sheep programspersistent reductions in circulating IGF-I and IGF-binding proteins in progeny,, Am. J. Physiol. Endocrinol. Metab., 295 (2008), 170.  doi: 10.1152/ajpendo.00047.2008.  Google Scholar

[5]

D. Kirschner, S. Lenhart and S. Serbis, Optimal control of the chemotherapy of HIV,, J. Math. Biol., 35 (1997), 775.  doi: 10.1007/s002850050076.  Google Scholar

[6]

S. Lenhart and J. T. Workman, Optimal control applied to biological models,, in, (2007).   Google Scholar

[7]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelize and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes" (ed. L. W. Neustadt),, Interscience Publishers John Wiley & Sons, (1962).   Google Scholar

[8]

D. A. Redmer, J. M. Wallace and L. P. Reynolds, Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development,, Domestic Animal Endocrinology, 27 (2004), 199.  doi: 10.1016/j.domaniend.2004.06.006.  Google Scholar

[9]

G. Wu, F. W. Bazer, T. A. Cudd, C. J. Meininger and T. E. Spencer, Maternal nutrition and fetal development,, Journal of Nutrition, 134 (2004), 2169.   Google Scholar

[10]

G. Wu, F. W. Bazer, J. M. Wallace and T. E. Spencer, Board-invited review: Intraurine growth retardation: Implications for the animal sciences,, Journal of Animal Science, 84 (2006), 2316.  doi: 10.2527/jas.2006-156.  Google Scholar

[11]

G. Zaman, Y. H. Kang and I. H. Jung, Optimal vaccination and treatment in the SIR epidemic model,, Proc. KSIAM, 3 (2007), 31.   Google Scholar

show all references

References:
[1]

C. W. Clark, "Bioeconomics: The Optimal Management of Renewable Resources,", Wiley, (1976).   Google Scholar

[2]

H. R. Joshi, Optimal control of an HIV immunology model,, Optim. Control Appl. Methods, 23 (2002), 199.  doi: 10.1002/oca.710.  Google Scholar

[3]

E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model,, Discrete and Continuous Dynamical Systems-Series B, 2 (2002), 473.  doi: 10.3934/dcdsb.2002.2.473.  Google Scholar

[4]

K. L. Gatford, J. A. Owens, S. Li, T. J. M. Moss, J. P. Newnham, J. R. G. Challis and D. M. Sloboda, Repeated betamethasone treatment of pregnant sheep programspersistent reductions in circulating IGF-I and IGF-binding proteins in progeny,, Am. J. Physiol. Endocrinol. Metab., 295 (2008), 170.  doi: 10.1152/ajpendo.00047.2008.  Google Scholar

[5]

D. Kirschner, S. Lenhart and S. Serbis, Optimal control of the chemotherapy of HIV,, J. Math. Biol., 35 (1997), 775.  doi: 10.1007/s002850050076.  Google Scholar

[6]

S. Lenhart and J. T. Workman, Optimal control applied to biological models,, in, (2007).   Google Scholar

[7]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelize and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes" (ed. L. W. Neustadt),, Interscience Publishers John Wiley & Sons, (1962).   Google Scholar

[8]

D. A. Redmer, J. M. Wallace and L. P. Reynolds, Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development,, Domestic Animal Endocrinology, 27 (2004), 199.  doi: 10.1016/j.domaniend.2004.06.006.  Google Scholar

[9]

G. Wu, F. W. Bazer, T. A. Cudd, C. J. Meininger and T. E. Spencer, Maternal nutrition and fetal development,, Journal of Nutrition, 134 (2004), 2169.   Google Scholar

[10]

G. Wu, F. W. Bazer, J. M. Wallace and T. E. Spencer, Board-invited review: Intraurine growth retardation: Implications for the animal sciences,, Journal of Animal Science, 84 (2006), 2316.  doi: 10.2527/jas.2006-156.  Google Scholar

[11]

G. Zaman, Y. H. Kang and I. H. Jung, Optimal vaccination and treatment in the SIR epidemic model,, Proc. KSIAM, 3 (2007), 31.   Google Scholar

[1]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[2]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[5]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[6]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[7]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[8]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[9]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[10]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[11]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[12]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

[Back to Top]