2011, 8(3): 753-768. doi: 10.3934/mbe.2011.8.753

Malaria model with stage-structured mosquitoes

1. 

Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899

Received  November 2010 Revised  November 2010 Published  June 2011

A simple SEIR model for malaria transmission dynamics is formulated as our baseline model. The metamorphic stages in the mosquito population are then included and a simple stage-structured mosquito population model is introduced, where the mosquito population is divided into two classes, with all three aquatic stages in one class and all adults in the other class, to keep the model tractable in mathematical analysis. After a brief investigation of this simple stage-structured mosquito model, it is incorporated into the baseline model to formulate a stage-structured malaria model. A basic analysis for the stage-structured malaria model is provided and it is shown that a theoretical framework can be built up for further studies on the impact of environmental or climate change on the malaria transmission. It is also shown that both the baseline and the stage-structured malaria models undergo backward bifurcations.
Citation: Jia Li. Malaria model with stage-structured mosquitoes. Mathematical Biosciences & Engineering, 2011, 8 (3) : 753-768. doi: 10.3934/mbe.2011.8.753
References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans,", Oxford Univ. Press, (1991).   Google Scholar

[2]

J. Arino, C. C. McCluskey and P. van den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation,, SIAM J. Appl. Math., 64 (2003), 260.  doi: 10.1137/S0036139902413829.  Google Scholar

[3]

J. L. Aron, Mathematical modeling of immunity to malaria,, Math. Biosci., 90 (1988), 385.  doi: 10.1016/0025-5564(88)90076-4.  Google Scholar

[4]

N. Becker, "Mosquitoes and Their Control,", Kluwer Academic/Plenum, (2003).   Google Scholar

[5]

A. Berman and R. J. Plemmons, "Nonnegative Matrices in the Mathematical Sciences,", Computer Science and Applied Mathematics, (1979).   Google Scholar

[6]

F. Brauer, Backward bifurcations in simple vacicnation models,, J. Math. Anal. Appl., 298 (2004), 418.  doi: 10.1016/j.jmaa.2004.05.045.  Google Scholar

[7]

CDC, Malaria Fact Sheet, 2010., Available from: \url{http://www.cdc.gov/malaria/about/facts.html}., ().   Google Scholar

[8]

A. N. Clements, "Development, Nutrition and Reproduction,", The Biology of Mosquitoes, 1 (2000).   Google Scholar

[9]

R. C. Dhiman, S. Pahwa and A. P. Dash, Climate change and malaria in India: Interplay between temperatures ans mosquitoes,, Regional Health Forum, 12 (2008), 27.   Google Scholar

[10]

K. Dietz, Mathematical models for transmission and control of malaria,, in, II (1988), 1091.   Google Scholar

[11]

K. Dietz, L. Molineaux and A. Thomas, A malaria model tested in the African savannah,, Bull. World Health Org., 50 (1974), 347.   Google Scholar

[12]

F. Dumortier, J. Llibre and J. C. Artés, "Qualitative Theory of Plannar Differential Systems,", Springer-Verlag, (2006).   Google Scholar

[13]

J. Dushoff, W. Huang and C. Castillo-Chavez, Backwards bifurcations and catastrophe in simple models of fatal diseases,, J. Math. Biol., 36 (1998), 227.  doi: 10.1007/s002850050099.  Google Scholar

[14]

C. Dye, Intraspecific competition amongst larval Aedes aegypti: Food exploitation or chemical interference,, Ecol. Entom., 7 (1982), 39.  doi: 10.1111/j.1365-2311.1982.tb00642.x.  Google Scholar

[15]

D. A. Focks, D. G. Haile, E. Daniels and G. A. Mount, Dynamics life table model for Aedes aegypti (L.) (Diptera: Culicidae),, J. Med. Entomol., 30 (1993), 1003.   Google Scholar

[16]

S. M. Garba, A. B. Gumel and M. R. Abu Bakar, Backward bifurcations in dengue transmission dynamics,, Math. Biosci., 215 (2008), 11.  doi: 10.1016/j.mbs.2008.05.002.  Google Scholar

[17]

R. M. Gleiser, J. Urrutia and D. E. Gorla, Effects of crowding on populations of Aedes albifasciatus larvae under laboratory conditions,, Entomologia Experimentalis et Applicata, 95 (2000), 135.  doi: 10.1046/j.1570-7458.2000.00651.x.  Google Scholar

[18]

E. A. Gould and S. Higgs, Impact of climate change and other factors on emerging arbovirus diseases,, Transactions of the Royal Society of Tropical Medicine and Hygience, 103 (2009), 109.  doi: 10.1016/j.trstmh.2008.07.025.  Google Scholar

[19]

K. P. Hadeler and P. van den Driessche, Backward bifurcation in epidemic control,, Math. Biosci., 146 (1997), 15.  doi: 10.1016/S0025-5564(97)00027-8.  Google Scholar

[20]

A. Hainesa, R. S. Kovatsa, D. Campbell-Lendrumb and C. Corvalan, Climate change and human health: Impacts, vulnerability and public health,, Public Health, 120 (2006), 585.  doi: 10.1016/j.puhe.2006.01.002.  Google Scholar

[21]

M. B. Hoshen and A. P. Morse, A weather-driven model of malaria transmission,, Malaria Journal, 3 (2004).  doi: 10.1186/1475-2875-3-32.  Google Scholar

[22]

J. M. Hyman and Jia Li, The Reproductive number for an HIV model with differential infectivity and staged progression,, Lin. Al. Appl., 398 (2005), 101.  doi: 10.1016/j.laa.2004.07.017.  Google Scholar

[23]

H. Kielhöfer, "Bifurcation Theory: An Introduction with Applications to PDEs,", Applied Mathematical Sciences, 156 (2004).   Google Scholar

[24]

Jia Li, Malaria models with partial immunity in humans,, Math. Biol. Eng., 5 (2008), 789.   Google Scholar

[25]

Jia Li, Simple stage-structured models for wild and transgenic mosquito populations,, J. Diff. Eqns. Appl., 15 (2009), 327.   Google Scholar

[26]

Y. Lou and X.-Q. Zhao, A climate-based malaria transmission model with structured vector population,, SIAM J. Appl. Math., 70 (2010), 2023.  doi: 10.1137/080744438.  Google Scholar

[27]

W. J. M. Martens, L. Niessen, J. Rotmans, T. H. Jetten and J. McMichael, Climate change and vector-borne diseases: A global modelling perspective,, Global Environ Change, 5 (1995), 195.  doi: 10.1016/0959-3780(95)00051-O.  Google Scholar

[28]

G. MacDonald, "The Epidemiology and Control of Malaria,", Oxford Univ. Press, (1957).   Google Scholar

[29]

P. Martens, R. S. Kovats, S. Nijhof, P. Vries, M. T. J. Livermore, D. J. Bradley, J. Cox and A. J. McMichael, Climate change and future populations at risk of malaria,, Global Environ Change, 9 (1999).  doi: 10.1016/S0959-3780(99)00020-5.  Google Scholar

[30]

L. Molineaux, The pros and cons of modeling malaria transmission,, Trans. R. Soc. Trop. Med. Hyg., 79 (1985), 743.  doi: 10.1016/0035-9203(85)90107-5.  Google Scholar

[31]

Mosquito, 2010., Available from: \url{http://www.enchantedlearning.com/subjects/insects/mosquito}., 2010 ().   Google Scholar

[32]

G. A. Ngwa, Modelling the dynamics of endemic malaria in growing populations,, Discrete and Continuous Dynamical Systems-Series B, 4 (2004), 1173.  doi: 10.3934/dcdsb.2004.4.1173.  Google Scholar

[33]

G. A. Ngwa, On the population dynamics of the malaria vector,, Bull Math Biol., 68 (2006), 2161.  doi: 10.1007/s11538-006-9104-x.  Google Scholar

[34]

G. A. Ngwa and W. S. Shu, A mathematical model for endemic malaria with variable human and mosquito populations,, Math. Comp. Modelling, 32 (2000), 747.  doi: 10.1016/S0895-7177(00)00169-2.  Google Scholar

[35]

M. Otero, H. G. Solari and N. Schweigmann, A stochastic population dynamics model for Aedes aegypti: Formulation and application to a city with temperate climate,, Bull. Math. Biol., 68 (2006), 1945.  doi: 10.1007/s11538-006-9067-y.  Google Scholar

[36]

K. P. Paaijmans, A. F. Read and M. B. Thomas, Understanding the link between malaria risk and climate,, Proc. Natl. Acad. Sci. \textbf{106} (2009), 106 (2009), 13844.  doi: 10.1073/pnas.0903423106.  Google Scholar

[37]

R. Ross, "The Prevention of Malaria,", John Murray, (1911).   Google Scholar

[38]

D. Ruiz, G. Poveda, I. D. Velez, M. L. Quinones, G. L. Rua, L. E. Velasquesz and J. S. Zuluaga, Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: Contributions to a national malaria early warning system,, Malaria Journal, 5 (2006).  doi: 10.1186/1475-2875-5-66.  Google Scholar

[39]

M. Safan, H. Heesterbeek and K. Dietz, The minimum effort required to eradicate infections in models with backward bifurcation,, J. Math. Biol., 53 (2006), 703.  doi: 10.1007/s00285-006-0028-8.  Google Scholar

[40]

W. H. Wernsdorfer, The importance of malaria in the world,, in, 1 (1980).   Google Scholar

[41]

WHO, "Malaria Fact Sheets," 2010., Available from: \url{http://www.who.int/mediacentre/factsheets/fs094/en/index.html}., 2010 ().   Google Scholar

[42]

H. M. Yang, Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector),, Rev Saude Publica, 34 (2000), 223.  doi: 10.1590/S0034-89102000000300003.  Google Scholar

[43]

H. M. Yang and M. U. Ferreira, Assessing the effects of global warming and local social economic conditions on the malaria transmission,, Rev Saude Publica, 34 (2000), 214.  doi: 10.1590/S0034-89102000000300002.  Google Scholar

show all references

References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans,", Oxford Univ. Press, (1991).   Google Scholar

[2]

J. Arino, C. C. McCluskey and P. van den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation,, SIAM J. Appl. Math., 64 (2003), 260.  doi: 10.1137/S0036139902413829.  Google Scholar

[3]

J. L. Aron, Mathematical modeling of immunity to malaria,, Math. Biosci., 90 (1988), 385.  doi: 10.1016/0025-5564(88)90076-4.  Google Scholar

[4]

N. Becker, "Mosquitoes and Their Control,", Kluwer Academic/Plenum, (2003).   Google Scholar

[5]

A. Berman and R. J. Plemmons, "Nonnegative Matrices in the Mathematical Sciences,", Computer Science and Applied Mathematics, (1979).   Google Scholar

[6]

F. Brauer, Backward bifurcations in simple vacicnation models,, J. Math. Anal. Appl., 298 (2004), 418.  doi: 10.1016/j.jmaa.2004.05.045.  Google Scholar

[7]

CDC, Malaria Fact Sheet, 2010., Available from: \url{http://www.cdc.gov/malaria/about/facts.html}., ().   Google Scholar

[8]

A. N. Clements, "Development, Nutrition and Reproduction,", The Biology of Mosquitoes, 1 (2000).   Google Scholar

[9]

R. C. Dhiman, S. Pahwa and A. P. Dash, Climate change and malaria in India: Interplay between temperatures ans mosquitoes,, Regional Health Forum, 12 (2008), 27.   Google Scholar

[10]

K. Dietz, Mathematical models for transmission and control of malaria,, in, II (1988), 1091.   Google Scholar

[11]

K. Dietz, L. Molineaux and A. Thomas, A malaria model tested in the African savannah,, Bull. World Health Org., 50 (1974), 347.   Google Scholar

[12]

F. Dumortier, J. Llibre and J. C. Artés, "Qualitative Theory of Plannar Differential Systems,", Springer-Verlag, (2006).   Google Scholar

[13]

J. Dushoff, W. Huang and C. Castillo-Chavez, Backwards bifurcations and catastrophe in simple models of fatal diseases,, J. Math. Biol., 36 (1998), 227.  doi: 10.1007/s002850050099.  Google Scholar

[14]

C. Dye, Intraspecific competition amongst larval Aedes aegypti: Food exploitation or chemical interference,, Ecol. Entom., 7 (1982), 39.  doi: 10.1111/j.1365-2311.1982.tb00642.x.  Google Scholar

[15]

D. A. Focks, D. G. Haile, E. Daniels and G. A. Mount, Dynamics life table model for Aedes aegypti (L.) (Diptera: Culicidae),, J. Med. Entomol., 30 (1993), 1003.   Google Scholar

[16]

S. M. Garba, A. B. Gumel and M. R. Abu Bakar, Backward bifurcations in dengue transmission dynamics,, Math. Biosci., 215 (2008), 11.  doi: 10.1016/j.mbs.2008.05.002.  Google Scholar

[17]

R. M. Gleiser, J. Urrutia and D. E. Gorla, Effects of crowding on populations of Aedes albifasciatus larvae under laboratory conditions,, Entomologia Experimentalis et Applicata, 95 (2000), 135.  doi: 10.1046/j.1570-7458.2000.00651.x.  Google Scholar

[18]

E. A. Gould and S. Higgs, Impact of climate change and other factors on emerging arbovirus diseases,, Transactions of the Royal Society of Tropical Medicine and Hygience, 103 (2009), 109.  doi: 10.1016/j.trstmh.2008.07.025.  Google Scholar

[19]

K. P. Hadeler and P. van den Driessche, Backward bifurcation in epidemic control,, Math. Biosci., 146 (1997), 15.  doi: 10.1016/S0025-5564(97)00027-8.  Google Scholar

[20]

A. Hainesa, R. S. Kovatsa, D. Campbell-Lendrumb and C. Corvalan, Climate change and human health: Impacts, vulnerability and public health,, Public Health, 120 (2006), 585.  doi: 10.1016/j.puhe.2006.01.002.  Google Scholar

[21]

M. B. Hoshen and A. P. Morse, A weather-driven model of malaria transmission,, Malaria Journal, 3 (2004).  doi: 10.1186/1475-2875-3-32.  Google Scholar

[22]

J. M. Hyman and Jia Li, The Reproductive number for an HIV model with differential infectivity and staged progression,, Lin. Al. Appl., 398 (2005), 101.  doi: 10.1016/j.laa.2004.07.017.  Google Scholar

[23]

H. Kielhöfer, "Bifurcation Theory: An Introduction with Applications to PDEs,", Applied Mathematical Sciences, 156 (2004).   Google Scholar

[24]

Jia Li, Malaria models with partial immunity in humans,, Math. Biol. Eng., 5 (2008), 789.   Google Scholar

[25]

Jia Li, Simple stage-structured models for wild and transgenic mosquito populations,, J. Diff. Eqns. Appl., 15 (2009), 327.   Google Scholar

[26]

Y. Lou and X.-Q. Zhao, A climate-based malaria transmission model with structured vector population,, SIAM J. Appl. Math., 70 (2010), 2023.  doi: 10.1137/080744438.  Google Scholar

[27]

W. J. M. Martens, L. Niessen, J. Rotmans, T. H. Jetten and J. McMichael, Climate change and vector-borne diseases: A global modelling perspective,, Global Environ Change, 5 (1995), 195.  doi: 10.1016/0959-3780(95)00051-O.  Google Scholar

[28]

G. MacDonald, "The Epidemiology and Control of Malaria,", Oxford Univ. Press, (1957).   Google Scholar

[29]

P. Martens, R. S. Kovats, S. Nijhof, P. Vries, M. T. J. Livermore, D. J. Bradley, J. Cox and A. J. McMichael, Climate change and future populations at risk of malaria,, Global Environ Change, 9 (1999).  doi: 10.1016/S0959-3780(99)00020-5.  Google Scholar

[30]

L. Molineaux, The pros and cons of modeling malaria transmission,, Trans. R. Soc. Trop. Med. Hyg., 79 (1985), 743.  doi: 10.1016/0035-9203(85)90107-5.  Google Scholar

[31]

Mosquito, 2010., Available from: \url{http://www.enchantedlearning.com/subjects/insects/mosquito}., 2010 ().   Google Scholar

[32]

G. A. Ngwa, Modelling the dynamics of endemic malaria in growing populations,, Discrete and Continuous Dynamical Systems-Series B, 4 (2004), 1173.  doi: 10.3934/dcdsb.2004.4.1173.  Google Scholar

[33]

G. A. Ngwa, On the population dynamics of the malaria vector,, Bull Math Biol., 68 (2006), 2161.  doi: 10.1007/s11538-006-9104-x.  Google Scholar

[34]

G. A. Ngwa and W. S. Shu, A mathematical model for endemic malaria with variable human and mosquito populations,, Math. Comp. Modelling, 32 (2000), 747.  doi: 10.1016/S0895-7177(00)00169-2.  Google Scholar

[35]

M. Otero, H. G. Solari and N. Schweigmann, A stochastic population dynamics model for Aedes aegypti: Formulation and application to a city with temperate climate,, Bull. Math. Biol., 68 (2006), 1945.  doi: 10.1007/s11538-006-9067-y.  Google Scholar

[36]

K. P. Paaijmans, A. F. Read and M. B. Thomas, Understanding the link between malaria risk and climate,, Proc. Natl. Acad. Sci. \textbf{106} (2009), 106 (2009), 13844.  doi: 10.1073/pnas.0903423106.  Google Scholar

[37]

R. Ross, "The Prevention of Malaria,", John Murray, (1911).   Google Scholar

[38]

D. Ruiz, G. Poveda, I. D. Velez, M. L. Quinones, G. L. Rua, L. E. Velasquesz and J. S. Zuluaga, Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: Contributions to a national malaria early warning system,, Malaria Journal, 5 (2006).  doi: 10.1186/1475-2875-5-66.  Google Scholar

[39]

M. Safan, H. Heesterbeek and K. Dietz, The minimum effort required to eradicate infections in models with backward bifurcation,, J. Math. Biol., 53 (2006), 703.  doi: 10.1007/s00285-006-0028-8.  Google Scholar

[40]

W. H. Wernsdorfer, The importance of malaria in the world,, in, 1 (1980).   Google Scholar

[41]

WHO, "Malaria Fact Sheets," 2010., Available from: \url{http://www.who.int/mediacentre/factsheets/fs094/en/index.html}., 2010 ().   Google Scholar

[42]

H. M. Yang, Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector),, Rev Saude Publica, 34 (2000), 223.  doi: 10.1590/S0034-89102000000300003.  Google Scholar

[43]

H. M. Yang and M. U. Ferreira, Assessing the effects of global warming and local social economic conditions on the malaria transmission,, Rev Saude Publica, 34 (2000), 214.  doi: 10.1590/S0034-89102000000300002.  Google Scholar

[1]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[2]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[3]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[4]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[5]

Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021016

[6]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[7]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[8]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[9]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[10]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[11]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[12]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[13]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[14]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[15]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[16]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[17]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[18]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[19]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[20]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]