-
Previous Article
Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents
- MBE Home
- This Issue
-
Next Article
Optimal number of sites in multi-site fisheries with fish stock dependent migrations
Numerical characterization of hemodynamics conditions near aortic valve after implantation of left ventricular assist device
1. | Department of Mathematics, University of Houston 4800 Calhoun Rd, Houston (TX) 77204, United States |
2. | Department of Mathematics, University of Houston, 4800 Calhoun Rd, Houston, TX 77204, United States |
3. | Department of Cardiology, Texas Heart Institute at St. Lukes Episcopal Hospital, and Mickael E Debakey VA Medical Center, 2002 Holcombe Boulevard, Houston, TX 77030, United States |
References:
[1] |
F. Autieri, N. Parolini and L. Quartapelle, Numerical investigation on the stability of singular driven cavity flow, J. Comput Phys, 183 (2002), 1-25.
doi: 10.1006/jcph.2002.7145. |
[2] |
S. Badia, A. Quaini and A. Quarteroni, Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect, Comput. Methods Appl. Mech. Engrg., 197 (2008), 4216-4232.
doi: 10.1016/j.cma.2008.04.018. |
[3] |
S. Badia, A. Quaini and A. Quarteroni, Splitting methods based on algebraic factorization for fluid-structure interaction, SIAM J. Sci. Comput., 30 (2008), 1778-1805.
doi: 10.1137/070680497. |
[4] |
S. Badia, A. Quaini and A. Quarteroni, Coupling Biot and Navier-Stokes equations for modelling fluid-poroelstic media interaction, J. Comput. Phys., 228 (2009), 7986-8014.
doi: 10.1016/j.jcp.2009.07.019. |
[5] |
M. Behr, D. Arora, Y. Nosé and T. Motomura, Performance analysis of ventricular assist devices using finite element flow simulation, Int. J. Numer. Meth. Fluids, 46 (2004), 1201-1210.
doi: 10.1002/fld.796. |
[6] |
F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods," Springer Series in Computational Mathematics, 15, Springer-Verlag, New York, 1991. |
[7] |
J. Coats, "A Manual Of Pathology," Longmans, Green, and Co., 1999. |
[8] |
R. Codina, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput. Methods Appl. Mech. Engrg., 191 (2002), 4295-4321.
doi: 10.1016/S0045-7825(02)00337-7. |
[9] |
A. Cordero, S. Castaño and G. Rábago, Prosthetic aortic valve thrombosis after Left Ventricular Assist Device implantation, Rev. Esp. Cardiol., 58 (2005), 863. |
[10] |
J. A. Crestanelloa, D. A. Orsinellib, M. S. Firstenberga and C. Sai-Sudhakar, Aortic valve thrombosis after implantation of temporary Left Ventricular Assist Device, Interactive Cardiovascular and Thoracic Surgery, 8 (2009), 661-662.
doi: 10.1510/icvts.2009.202242. |
[11] |
L. Formaggia and F. Nobile, A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Num. Math., 7 (1999), 105-131. |
[12] |
K. Fraser, T. Zhang, M. Ertan Taskin, B. P. Griffith, Z. J. Wu, F. Alamanni, E. G. Caiani and A. Redaelli, Computational fluid dynamics analysis of thrombosis potential in Left Ventricular Assist Device drainage cannulae, ASAIO J., in press, 2010.
doi: 10.1097/MAT.0b013e3181d861f1. |
[13] |
M. A. Gimbrone, Endothelial disfunction, hemodynamic forces, and atherosclerosis (pubmed abstract), Thrombos Haemost, 82 (1999), 722-726. |
[14] |
B. Ker, R. M. Delgado III, O. H. Frazier, I. D. Gregoric, M. T. Harting, Y. Wadia, T. J. Myers, R. D. Moser and J. Freund, The effect of LVAD aortic outflow-graft placement on hemodynamics and flow: Implantation technique and computer flow modeling, Texas Heart Institute Journal, 32 (2005), 294-298. |
[15] |
K. D. May-Newman, B. K. Hillen, C. S. Sironda and W. Dembitsky, Effect of LVAD outflow conduit insertion angle on flow through the native aorta, J. of Medical Engineering and Technology, 28 (2004), 105-109.
doi: 10.1080/0309190042000193865. |
[16] |
A. L. Meyer, C. K. Kuehn, J. W. Weidemann, D. Malehsa, C. Bara, S. Fischer, A. Haverich and M. Strüber, Thrombus formation in a HeartMate II Left Ventricular Assist Device, Thoracic and Cardiovascular Surgery, 135 (2000), 203-204. |
[17] |
F. Nobile, "Numerical Approximation of Fluid-Structure Interaction Problems with Application to Haemodynamics," Ph.D thesis, École Polytechnique Fédérale de Lausanne, 2001. |
[18] |
A. Quaini, S. Canic, R. Glowinski, S. Little and W. Zoghbi, The influence of the Coanda effect on the assessment of mitral valve regurgitation: A numerical investigation, in preparation, 2010. |
[19] |
A. Quarteroni and A. Valli, "Numerical Approximation of Partial Differential Equations," Springer Series in Computational Mathematics, 23, Springer-Verlag, Berlin, 1994. |
[20] |
A. G. Rose, J. H. Connelly, S. J. Park, O. H. Frazier, L. W. Miller and S. Ormaza, Total left ventricular outflow tract obstruction due to Left Ventricular Assist Device induced sub-aortic thrombosis in 2 patients with aortic valve bioprosthesis, Journal of Heart and Lung Transplantation, 22 (2003), 594-599.
doi: 10.1016/S1053-2498(02)01180-4. |
[21] |
Y. Saad, "Iterative Methods for Sparse Linear Systems," 2nd edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2003. |
[22] |
D. Seiffge, Thrombotic reactions of vascular anastomoses: Comparison of model studies with experimental findings, Vasa Suppl., 32 (1991), 54-56. |
[23] |
N. G. Smedira, Invited commentary: Valve disease and LVAD, Annals of Thoracic Surgery, 71 (2001), 1453.
doi: 10.1016/S0003-4975(01)02577-2. |
show all references
References:
[1] |
F. Autieri, N. Parolini and L. Quartapelle, Numerical investigation on the stability of singular driven cavity flow, J. Comput Phys, 183 (2002), 1-25.
doi: 10.1006/jcph.2002.7145. |
[2] |
S. Badia, A. Quaini and A. Quarteroni, Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect, Comput. Methods Appl. Mech. Engrg., 197 (2008), 4216-4232.
doi: 10.1016/j.cma.2008.04.018. |
[3] |
S. Badia, A. Quaini and A. Quarteroni, Splitting methods based on algebraic factorization for fluid-structure interaction, SIAM J. Sci. Comput., 30 (2008), 1778-1805.
doi: 10.1137/070680497. |
[4] |
S. Badia, A. Quaini and A. Quarteroni, Coupling Biot and Navier-Stokes equations for modelling fluid-poroelstic media interaction, J. Comput. Phys., 228 (2009), 7986-8014.
doi: 10.1016/j.jcp.2009.07.019. |
[5] |
M. Behr, D. Arora, Y. Nosé and T. Motomura, Performance analysis of ventricular assist devices using finite element flow simulation, Int. J. Numer. Meth. Fluids, 46 (2004), 1201-1210.
doi: 10.1002/fld.796. |
[6] |
F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods," Springer Series in Computational Mathematics, 15, Springer-Verlag, New York, 1991. |
[7] |
J. Coats, "A Manual Of Pathology," Longmans, Green, and Co., 1999. |
[8] |
R. Codina, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput. Methods Appl. Mech. Engrg., 191 (2002), 4295-4321.
doi: 10.1016/S0045-7825(02)00337-7. |
[9] |
A. Cordero, S. Castaño and G. Rábago, Prosthetic aortic valve thrombosis after Left Ventricular Assist Device implantation, Rev. Esp. Cardiol., 58 (2005), 863. |
[10] |
J. A. Crestanelloa, D. A. Orsinellib, M. S. Firstenberga and C. Sai-Sudhakar, Aortic valve thrombosis after implantation of temporary Left Ventricular Assist Device, Interactive Cardiovascular and Thoracic Surgery, 8 (2009), 661-662.
doi: 10.1510/icvts.2009.202242. |
[11] |
L. Formaggia and F. Nobile, A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Num. Math., 7 (1999), 105-131. |
[12] |
K. Fraser, T. Zhang, M. Ertan Taskin, B. P. Griffith, Z. J. Wu, F. Alamanni, E. G. Caiani and A. Redaelli, Computational fluid dynamics analysis of thrombosis potential in Left Ventricular Assist Device drainage cannulae, ASAIO J., in press, 2010.
doi: 10.1097/MAT.0b013e3181d861f1. |
[13] |
M. A. Gimbrone, Endothelial disfunction, hemodynamic forces, and atherosclerosis (pubmed abstract), Thrombos Haemost, 82 (1999), 722-726. |
[14] |
B. Ker, R. M. Delgado III, O. H. Frazier, I. D. Gregoric, M. T. Harting, Y. Wadia, T. J. Myers, R. D. Moser and J. Freund, The effect of LVAD aortic outflow-graft placement on hemodynamics and flow: Implantation technique and computer flow modeling, Texas Heart Institute Journal, 32 (2005), 294-298. |
[15] |
K. D. May-Newman, B. K. Hillen, C. S. Sironda and W. Dembitsky, Effect of LVAD outflow conduit insertion angle on flow through the native aorta, J. of Medical Engineering and Technology, 28 (2004), 105-109.
doi: 10.1080/0309190042000193865. |
[16] |
A. L. Meyer, C. K. Kuehn, J. W. Weidemann, D. Malehsa, C. Bara, S. Fischer, A. Haverich and M. Strüber, Thrombus formation in a HeartMate II Left Ventricular Assist Device, Thoracic and Cardiovascular Surgery, 135 (2000), 203-204. |
[17] |
F. Nobile, "Numerical Approximation of Fluid-Structure Interaction Problems with Application to Haemodynamics," Ph.D thesis, École Polytechnique Fédérale de Lausanne, 2001. |
[18] |
A. Quaini, S. Canic, R. Glowinski, S. Little and W. Zoghbi, The influence of the Coanda effect on the assessment of mitral valve regurgitation: A numerical investigation, in preparation, 2010. |
[19] |
A. Quarteroni and A. Valli, "Numerical Approximation of Partial Differential Equations," Springer Series in Computational Mathematics, 23, Springer-Verlag, Berlin, 1994. |
[20] |
A. G. Rose, J. H. Connelly, S. J. Park, O. H. Frazier, L. W. Miller and S. Ormaza, Total left ventricular outflow tract obstruction due to Left Ventricular Assist Device induced sub-aortic thrombosis in 2 patients with aortic valve bioprosthesis, Journal of Heart and Lung Transplantation, 22 (2003), 594-599.
doi: 10.1016/S1053-2498(02)01180-4. |
[21] |
Y. Saad, "Iterative Methods for Sparse Linear Systems," 2nd edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2003. |
[22] |
D. Seiffge, Thrombotic reactions of vascular anastomoses: Comparison of model studies with experimental findings, Vasa Suppl., 32 (1991), 54-56. |
[23] |
N. G. Smedira, Invited commentary: Valve disease and LVAD, Annals of Thoracic Surgery, 71 (2001), 1453.
doi: 10.1016/S0003-4975(01)02577-2. |
[1] |
Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633 |
[2] |
Grégoire Allaire, Alessandro Ferriero. Homogenization and long time asymptotic of a fluid-structure interaction problem. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 199-220. doi: 10.3934/dcdsb.2008.9.199 |
[3] |
Serge Nicaise, Cristina Pignotti. Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3 (4) : 787-813. doi: 10.3934/nhm.2008.3.787 |
[4] |
Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355 |
[5] |
George Avalos, Roberto Triggiani. Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations and Control Theory, 2013, 2 (4) : 563-598. doi: 10.3934/eect.2013.2.563 |
[6] |
Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012 |
[7] |
Daniele Boffi, Lucia Gastaldi, Sebastian Wolf. Higher-order time-stepping schemes for fluid-structure interaction problems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3807-3830. doi: 10.3934/dcdsb.2020229 |
[8] |
Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić. Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks and Heterogeneous Media, 2007, 2 (3) : 397-423. doi: 10.3934/nhm.2007.2.397 |
[9] |
George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817 |
[10] |
Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349 |
[11] |
Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269 |
[12] |
Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries: A novel fluid-structure interaction computational model, and experimental validation. Mathematical Biosciences & Engineering, 2013, 10 (2) : 295-318. doi: 10.3934/mbe.2013.10.295 |
[13] |
George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations and Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557 |
[14] |
Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction systems. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2315-2373. doi: 10.3934/dcds.2017102 |
[15] |
Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39 |
[16] |
George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417 |
[17] |
Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Fluid structure interaction problem with changing thickness beam and slightly compressible fluid. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1133-1148. doi: 10.3934/dcdss.2014.7.1133 |
[18] |
Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424 |
[19] |
Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. FLUID STRUCTURE INTERACTION PROBLEM WITH CHANGING THICKNESS NON-LINEAR BEAM Fluid structure interaction problem with changing thickness non-linear beam. Conference Publications, 2011, 2011 (Special) : 813-823. doi: 10.3934/proc.2011.2011.813 |
[20] |
Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]