• Previous Article
    Global dynamics of the chemostat with different removal rates and variable yields
  • MBE Home
  • This Issue
  • Next Article
    Numerical characterization of hemodynamics conditions near aortic valve after implantation of left ventricular assist device
2011, 8(3): 807-825. doi: 10.3934/mbe.2011.8.807

Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents

1. 

Mathematics Department, University of Louisiana at Lafayette, Lafayette, LA 70504, United States

Received  October 2010 Revised  March 2011 Published  June 2011

This paper extends the work of Salceanu and Smith [12, 13] where Lyapunov exponents were used to obtain conditions for uniform persistence in a class of dissipative discrete-time dynamical systems on the positive orthant of $\mathbb{R}^m$, generated by maps. Here a unified approach is taken, for both discrete and continuous time, and the dissipativity assumption is relaxed. Sufficient conditions are given for compact subsets of an invariant part of the boundary of $\mathbb{R}^m_+$ to be robust uniform weak repellers. These conditions require Lyapunov exponents be positive on such sets. It is shown how this leads to robust uniform persistence. The results apply to the investigation of robust uniform persistence of the disease in host populations, as shown in an application.
Citation: Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807
References:
[1]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[2]

P. Ashwin, J. Buescu and I. Stewart, From attractor to chaotic saddle: A tale of transverse instability,, Nonlinearity, 9 (1996), 703.  doi: 10.1088/0951-7715/9/3/006.  Google Scholar

[3]

C. Conley, "Isolated Invariant Sets and the Morse Index,", CBMS Regional Conference Series in Mathematics, 38 (1978).   Google Scholar

[4]

B. M. Garay and J. Hofbauer, Robust permanence for ecological differential equations, minimax, and discretizations,, SIAM J. Math. Anal., 34 (2003), 1007.  doi: 10.1137/S0036141001392815.  Google Scholar

[5]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388.  doi: 10.1137/0520025.  Google Scholar

[6]

M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity and strong repellors for semidynamical systems,, J. Dynamics and Diff. Eqns., 13 (2001), 107.  doi: 10.1023/A:1009044515567.  Google Scholar

[7]

J. Hofbauer and S. J. Schreiber, Robust permanence for interacting structured populations,, J. Diff. Eqns., 248 (2010), 1955.  doi: 10.1016/j.jde.2009.11.010.  Google Scholar

[8]

E. O. Jones, A. White and M. Boots, Interference and the persistence of vertically transmitted parasites,, J. Theor. Biol., 246 (2007), 10.  doi: 10.1016/j.jtbi.2006.12.007.  Google Scholar

[9]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Encyclopedia of Mathematics and its Applications, 54 (1995).   Google Scholar

[10]

J. F. Reineck, Continuation to gradient flows,, Duke Math. J., 64 (1991), 261.  doi: 10.1215/S0012-7094-91-06413-6.  Google Scholar

[11]

P. L. Salceanu, "Lyapunov Exponents and Persistence in Dynamical Systems with Applications to some Discrete Time Models,", Ph.D thesis, (2009).   Google Scholar

[12]

P. L. Salceanu and H. L. Smith, Lyapunov exponents and persistence in discrete dynamical systems,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 187.  doi: 10.3934/dcdsb.2009.12.187.  Google Scholar

[13]

P. L. Salceanu and H. L. Smith, Lyapunov exponents and uniform weak normally repelling invariant sets,, in, 389 (2009), 17.   Google Scholar

[14]

S. Schreiber, Criteria for $C^r$ robust permanence,, J. Differential Equations, 162 (2000), 400.  doi: 10.1006/jdeq.1999.3719.  Google Scholar

[15]

E. Seneta, "Non-negative Matrices. An Introduction to Theory and Applications,", Halsted Press, (1973).   Google Scholar

[16]

H. L. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, (1995).   Google Scholar

[17]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995).   Google Scholar

[18]

H. L. Smith and H. Thieme, "Dynamical Systems and Population Persistence,", Graduate Studies in Mathematics, 118 (2011).   Google Scholar

[19]

H. L. Smith, X.-Q. Zhao, Robust persistence for semi-dynamical systems,, Nonlinear Analysis, 47 (2001), 6169.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[20]

H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model),, SIAM J. Math. Anal., 24 (1993), 407.  doi: 10.1137/0524026.  Google Scholar

[21]

X.-Q. Zhao, "Dynamical Systems in Population Biology,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 16 (2003).   Google Scholar

show all references

References:
[1]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[2]

P. Ashwin, J. Buescu and I. Stewart, From attractor to chaotic saddle: A tale of transverse instability,, Nonlinearity, 9 (1996), 703.  doi: 10.1088/0951-7715/9/3/006.  Google Scholar

[3]

C. Conley, "Isolated Invariant Sets and the Morse Index,", CBMS Regional Conference Series in Mathematics, 38 (1978).   Google Scholar

[4]

B. M. Garay and J. Hofbauer, Robust permanence for ecological differential equations, minimax, and discretizations,, SIAM J. Math. Anal., 34 (2003), 1007.  doi: 10.1137/S0036141001392815.  Google Scholar

[5]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388.  doi: 10.1137/0520025.  Google Scholar

[6]

M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity and strong repellors for semidynamical systems,, J. Dynamics and Diff. Eqns., 13 (2001), 107.  doi: 10.1023/A:1009044515567.  Google Scholar

[7]

J. Hofbauer and S. J. Schreiber, Robust permanence for interacting structured populations,, J. Diff. Eqns., 248 (2010), 1955.  doi: 10.1016/j.jde.2009.11.010.  Google Scholar

[8]

E. O. Jones, A. White and M. Boots, Interference and the persistence of vertically transmitted parasites,, J. Theor. Biol., 246 (2007), 10.  doi: 10.1016/j.jtbi.2006.12.007.  Google Scholar

[9]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Encyclopedia of Mathematics and its Applications, 54 (1995).   Google Scholar

[10]

J. F. Reineck, Continuation to gradient flows,, Duke Math. J., 64 (1991), 261.  doi: 10.1215/S0012-7094-91-06413-6.  Google Scholar

[11]

P. L. Salceanu, "Lyapunov Exponents and Persistence in Dynamical Systems with Applications to some Discrete Time Models,", Ph.D thesis, (2009).   Google Scholar

[12]

P. L. Salceanu and H. L. Smith, Lyapunov exponents and persistence in discrete dynamical systems,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 187.  doi: 10.3934/dcdsb.2009.12.187.  Google Scholar

[13]

P. L. Salceanu and H. L. Smith, Lyapunov exponents and uniform weak normally repelling invariant sets,, in, 389 (2009), 17.   Google Scholar

[14]

S. Schreiber, Criteria for $C^r$ robust permanence,, J. Differential Equations, 162 (2000), 400.  doi: 10.1006/jdeq.1999.3719.  Google Scholar

[15]

E. Seneta, "Non-negative Matrices. An Introduction to Theory and Applications,", Halsted Press, (1973).   Google Scholar

[16]

H. L. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, (1995).   Google Scholar

[17]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995).   Google Scholar

[18]

H. L. Smith and H. Thieme, "Dynamical Systems and Population Persistence,", Graduate Studies in Mathematics, 118 (2011).   Google Scholar

[19]

H. L. Smith, X.-Q. Zhao, Robust persistence for semi-dynamical systems,, Nonlinear Analysis, 47 (2001), 6169.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[20]

H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model),, SIAM J. Math. Anal., 24 (1993), 407.  doi: 10.1137/0524026.  Google Scholar

[21]

X.-Q. Zhao, "Dynamical Systems in Population Biology,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 16 (2003).   Google Scholar

[1]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[2]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[3]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[4]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[5]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[6]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[7]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[8]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[9]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[10]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[11]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[12]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[13]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[14]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[15]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[16]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[17]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[18]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[19]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[20]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]