# American Institute of Mathematical Sciences

2011, 8(3): 841-860. doi: 10.3934/mbe.2011.8.841

## The replicability of oncolytic virus: Defining conditions in tumor virotherapy

 1 Mathematics Department, College of William and Mary, Williamsburg, VA 23187, United States

Received  June 2010 Revised  October 2010 Published  June 2011

The replicability of an oncolytic virus is measured by its burst size. The burst size is the number of new viruses coming out from a lysis of an infected tumor cell. Some clinical evidences show that the burst size of an oncolytic virus is a defining parameter for the success of virotherapy. This article analyzes a basic mathematical model that includes burst size for oncolytic virotherapy. The analysis of the model shows that there are two threshold values of the burst size: below the first threshold, the tumor always grows to its maximum (carrying capacity) size; while passing this threshold, there is a locally stable positive equilibrium solution appearing through transcritical bifurcation; while at or above the second threshold, there exits one or three families of periodic solutions arising from Hopf bifurcations. The study suggests that the tumor load can drop to a undetectable level either during the oscillation or when the burst size is large enough.
Citation: Jianjun Paul Tian. The replicability of oncolytic virus: Defining conditions in tumor virotherapy. Mathematical Biosciences & Engineering, 2011, 8 (3) : 841-860. doi: 10.3934/mbe.2011.8.841
##### References:
 [1] M. Aghi and R. L. Martuza, Oncolytic viral therapy-the clinical experience, Oncogene, 24 (2005), 7802-7816. doi: 10.1038/sj.onc.1209037. [2] Z. Bajzer, T. Carr, K. Josic, S. J. Russel and D. Dingli, Modeling of cancer virotherapy with recombinant measles viruses, J. Theoretical Biology, 252 (2008), 109-122. doi: 10.1016/j.jtbi.2008.01.016. [3] J. Carr, "Applications of Centre Manifold Theory," Applied Mathematics Sciences, 35, Springer-Verlag, New York-Berlin, 1981. [4] E. A. Chiocca, Oncolytic viruses, Nature Reviews, Cancer, 2 (2002), 938-950. doi: 10.1038/nrc948. [5] D. Dingli, M. D. Cascino, K. Josić, S. J. Russell and Z. Bajzer, Mathematical modeling of cancer radiovirotherapy, Math. Biosci., 199 (2006), 55-78. doi: 10.1016/j.mbs.2005.11.001. [6] A. Friedman, J. P. Tian, G. Fulci, E. A. Chiocca and J. Wang, Glioma virotherapy: Effects of innate immune suppression and increased viral replication capacity, Cancer Research, 66 (2006), 2314-2319. doi: 10.1158/0008-5472.CAN-05-2661. [7] B. A. Fuchs and V. I. Levin, "Functions of A Complex Variable," Pergamon Press, London, 1961. [8] G. Fulci, et al, Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses, PNAS Proceedings of the National Academy of Sciences of the United States of America, 103 (2006), 12873-12878. [9] B. D. Hassard, N. D. Hazzarinoff and Y.-H. Wan, "Theory and Applications of Hopf Bifurcation," Cambridge, 1981. [10] H. Kambara, H. Okano, E. A. Chiocca and Y. Saeki, An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor, Cancer Res., 65 (2005), 2832-2839. doi: 10.1158/0008-5472.CAN-04-3227. [11] A. S. Novozhilov, F. S. Berezovskaya, E. V. Koonin and G. P. Karev, Mathematical modeling of tumor therapy with oncolytic viruses: Regimes with complete tumor elimination within the framework of deterministic models, Biology Direct, 1 (2006), 1-18. doi: 10.1186/1745-6150-1-6. [12] Y. Tao and Q. Guo, The competitive dynamics between tumor cells, a replication-competent virus and an immune response, J. Math. Biol., 51 (2005), 37-74. doi: 10.1007/s00285-004-0310-6. [13] D. Vasiliu and J. P. Tian, Periodic solutions of a model for tumor virotherapy, Discrete and Continuous Dynamical Systems Ser. S, 4 (2011), 1587-1597. doi: 10.3934/dcdss.2011.4.1587. [14] L. M. Wein, J. T. Wu and D. H. Kirn, Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: Implications for virus design and delivery, Cancer Res., 63 (2003), 1317-1324. [15] D. Wodarz, Viruses as antitumor weapons: Defining conditions for tumor remission, Cancer Res., 61 (2001), 3501-3507. [16] D. Wodarz and N. Komarova, Towards predictive computational models of oncolytic virus therapy: Basis for experimental validation and model selection, PloS ONE, 4 (2009), e4271. doi: 10.1371/journal.pone.0004271. [17] D. Wodarz, Gene therapy for killing p53-negative cancer cells: Use of replicating versus nonreplicating agents, Hum. Gene Ther., 14 (2003), 153-159. doi: 10.1089/104303403321070847. [18] J. T. Wu, H. M. Byrne, D. H. Kirn and L. M. Wein, Modeling and analysis of a virus that replicates selectively in tumor cells, Bull. Math. Biol., 63 (2001), 731-768. doi: 10.1006/bulm.2001.0245.

show all references

##### References:
 [1] M. Aghi and R. L. Martuza, Oncolytic viral therapy-the clinical experience, Oncogene, 24 (2005), 7802-7816. doi: 10.1038/sj.onc.1209037. [2] Z. Bajzer, T. Carr, K. Josic, S. J. Russel and D. Dingli, Modeling of cancer virotherapy with recombinant measles viruses, J. Theoretical Biology, 252 (2008), 109-122. doi: 10.1016/j.jtbi.2008.01.016. [3] J. Carr, "Applications of Centre Manifold Theory," Applied Mathematics Sciences, 35, Springer-Verlag, New York-Berlin, 1981. [4] E. A. Chiocca, Oncolytic viruses, Nature Reviews, Cancer, 2 (2002), 938-950. doi: 10.1038/nrc948. [5] D. Dingli, M. D. Cascino, K. Josić, S. J. Russell and Z. Bajzer, Mathematical modeling of cancer radiovirotherapy, Math. Biosci., 199 (2006), 55-78. doi: 10.1016/j.mbs.2005.11.001. [6] A. Friedman, J. P. Tian, G. Fulci, E. A. Chiocca and J. Wang, Glioma virotherapy: Effects of innate immune suppression and increased viral replication capacity, Cancer Research, 66 (2006), 2314-2319. doi: 10.1158/0008-5472.CAN-05-2661. [7] B. A. Fuchs and V. I. Levin, "Functions of A Complex Variable," Pergamon Press, London, 1961. [8] G. Fulci, et al, Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses, PNAS Proceedings of the National Academy of Sciences of the United States of America, 103 (2006), 12873-12878. [9] B. D. Hassard, N. D. Hazzarinoff and Y.-H. Wan, "Theory and Applications of Hopf Bifurcation," Cambridge, 1981. [10] H. Kambara, H. Okano, E. A. Chiocca and Y. Saeki, An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor, Cancer Res., 65 (2005), 2832-2839. doi: 10.1158/0008-5472.CAN-04-3227. [11] A. S. Novozhilov, F. S. Berezovskaya, E. V. Koonin and G. P. Karev, Mathematical modeling of tumor therapy with oncolytic viruses: Regimes with complete tumor elimination within the framework of deterministic models, Biology Direct, 1 (2006), 1-18. doi: 10.1186/1745-6150-1-6. [12] Y. Tao and Q. Guo, The competitive dynamics between tumor cells, a replication-competent virus and an immune response, J. Math. Biol., 51 (2005), 37-74. doi: 10.1007/s00285-004-0310-6. [13] D. Vasiliu and J. P. Tian, Periodic solutions of a model for tumor virotherapy, Discrete and Continuous Dynamical Systems Ser. S, 4 (2011), 1587-1597. doi: 10.3934/dcdss.2011.4.1587. [14] L. M. Wein, J. T. Wu and D. H. Kirn, Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: Implications for virus design and delivery, Cancer Res., 63 (2003), 1317-1324. [15] D. Wodarz, Viruses as antitumor weapons: Defining conditions for tumor remission, Cancer Res., 61 (2001), 3501-3507. [16] D. Wodarz and N. Komarova, Towards predictive computational models of oncolytic virus therapy: Basis for experimental validation and model selection, PloS ONE, 4 (2009), e4271. doi: 10.1371/journal.pone.0004271. [17] D. Wodarz, Gene therapy for killing p53-negative cancer cells: Use of replicating versus nonreplicating agents, Hum. Gene Ther., 14 (2003), 153-159. doi: 10.1089/104303403321070847. [18] J. T. Wu, H. M. Byrne, D. H. Kirn and L. M. Wein, Modeling and analysis of a virus that replicates selectively in tumor cells, Bull. Math. Biol., 63 (2001), 731-768. doi: 10.1006/bulm.2001.0245.
 [1] Jixun Chu, Pierre Magal. Hopf bifurcation for a size-structured model with resting phase. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4891-4921. doi: 10.3934/dcds.2013.33.4891 [2] Pavol Bokes. Exact and WKB-approximate distributions in a gene expression model with feedback in burst frequency, burst size, and protein stability. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2129-2145. doi: 10.3934/dcdsb.2021126 [3] Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 [4] Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045 [5] John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 [6] Pavol Bokes. Maintaining gene expression levels by positive feedback in burst size in the presence of infinitesimal delay. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5539-5552. doi: 10.3934/dcdsb.2019070 [7] Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152 [8] Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 [9] Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098 [10] Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71 [11] R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure and Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147 [12] Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197 [13] Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 [14] Begoña Alarcón, Víctor Guíñez, Carlos Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 247-258. doi: 10.3934/dcds.2007.17.247 [15] Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022069 [16] Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026 [17] Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325 [18] Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735 [19] Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121 [20] Jaume Llibre, Claudio A. Buzzi, Paulo R. da Silva. 3-dimensional Hopf bifurcation via averaging theory. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 529-540. doi: 10.3934/dcds.2007.17.529

2018 Impact Factor: 1.313