
Previous Article
A mathematical model of the PurkinjeMuscle Junctions
 MBE Home
 This Issue
 Next Article
Controlling malaria with indoor residual spraying in spatially heterogenous environments
1.  Department of Mathematics, The University of Ottawa, 585 King Edward Ave Ottawa, ON K1N 6N5, Canada 
2.  Department of Mathematics and Faculty of Medicine, The University of Ottawa, 585 King Edward Ave Ottawa, ON K1N 6N5, Canada 
References:
[1] 
N. Asmer, “Partial Differential Equations with Fourier Series and Boundary Value Problems,” Pearson Preatice Hall, USA, 2005. 
[2] 
D. D. Bainov and P. S. Simeonov, “Systems with Impulsive Effect,” Ellis Horwood Ltd, Chichester, 1989. 
[3] 
D. D. Bainov and P. S. Simeonov, “Impulsive Differential Equations: Periodic Solutions and Applications,” Longman Scientific and Technical, Burnt Mill, 1993. 
[4] 
D. D. Bainov and P. S. Simeonov, “Impulsive Differential Equations: Asymptotic Properties of the Solutions,” World Scientific, Singapore, 1995. 
[5] 
P. F. Beales, V. S. Orlov and R. L. Kouynetsov, eds., “Malaria and Planning for its Control in Tropical Africa,” Moscow, WHO and UNDP, 1989. 
[6] 
J. G. Breman, M. S. Alilio and A. Mills, Conquering the intolerable burden of malaria: What's new, what's needed: A summary, Am. J. Trop. Med. Hyg., 71 (2004), 115. 
[7] 
R. Carter, K. N. Mendis and D. Roberts, Spatial targeting of interventions against malaria, Bulletin of the World Health Organization, 78 (2000), 14011411. 
[8] 
J. De Zuletta, G. W. Kafuko, A. W. R. McCrae, et al., A malaria eradication experiment in the highlands of Kigezi (Uganda), East African Medical Journal, 41 (1964), 102120. 
[9] 
R. El Attar, “Special Functions and Orthogonal Polynomials,” Lula Press, USA, 2006. 
[10] 
M. Finkel, Malaria: Stopping a global killer, National Geographic, July 2007. 
[11] 
W. A. Foster, Mosquito sugar feeding and reproductive energetics, Annu. Rev. Entomol., 40 (1995), 443474. 
[12] 
C. GarrettJones, Prognosis for interruption of malaria transmission through assessment of the mosquito's vectorial capacity, Nature, 204 (1964), 11731174. 
[13] 
T. A. Ghebreyesus, M. Haile, K. H. Witten, A. Getachew, M. Yohannes, S. W. Lindsay and P. Byass, Household risk factors for malaria among children in the Ethiopian highlands, Trans. R. Soc. Trop. Med. Hyg., 94 (2000), 1721. 
[14] 
, “Global Malaria Programme: Indoor Residual Spraying,” Report of the World Health Organization, 2006. Available from: http://whqlibdoc.who.int/hq/2006/WHO_HTM_MAL_2006.1112_eng.pdf. 
[15] 
G. Hasibeder and C. Dye, Population dynamics of mosquitoborne disease: Persistence in a completely heterogeneous environment, Theor. Pop. Biol., 33 (1988), 3153. 
[16] 
J. Keiser, J. Utzinger, M. Caldas de Castro, T. A. Smith, M. Tanner and B. H. Singer, Urbanization in subSaharan Africa and implication for malaria control, Am. J. Trop. Med. Hyg., 71 (2 Suppl) (2004), 118127. 
[17] 
R. I. Kouznetsov, Malaria control by application of indoor spraying of residual insecticides in tropical Africa and its impact on population health, Tropical Doctor, 7 (1977), 8191. 
[18] 
V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, “Theory of Impulsive Differential Equations,” World Scientific, Singapore, 1989. 
[19] 
A. D. Lopez, C. D. Mathers, M. Ezzati, D. T. Jamison and C. J. Murray, Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data, Lancet, 367 (2006), 17471757. doi: 10.1016/S01406736(06)687709. 
[20] 
M. L. Mabaso, B. Sharp and C. Lengeler, Historical review of malarial control in southern Africa with emphasis on the use of indoor residual housespraying, Trop. Med. Int. Health, 9 (2004), 846856. 
[21] 
K. Macintyre, J. Keating, Y. B. Okbaldt, M. Zerom, S. Sosler, T. Ghebremeskel and T. P. Eisele, Rolling out insecticide treated nets in Eritrea: Examining the determinants of possession and use in malarious zones during the rainy season, Trop. Med. Int. Health, 11 (2006), 824833. 
[22] 
N. Maidana and H. Yang, A spatial model to describe the dengue propagation, TEMA Tend. Mat. Apl. Comput., 8 (2007), 8392. 
[23] 
E. A. C. Newton and P. Rieter, A model of the transmission of Dengue Fever with an evaluation of the impact of UltraLow Volume (ULV) insecticide applications on Dengue epidemics, Am. J. Trop. Med. Hyg., 47 (1992), 709720. 
[24] 
A. Polyanin and A. Manzhirov, “Handbook of Integral Equations,” 2^{nd} edition, Chapman and Hall/CRC, 2008. doi: 10.1201/9781420010558. 
[25] 
K. D. Silué, G. Raso, A. Yapi, P. Vounatsou, M. Tanner, E. K. Ńgoran and J. Utzinger, Spatiallyexplicit risk profiling of Plasmodium falciparum infections at a small scale: A geostatistical modelling approach, Malar J., 7 (2008), 111. doi: 10.1186/147528757111. 
[26] 
R. J. Smith?, Could lowefficacy malaria vaccines increase secondary infections in endemic areas?, in “Mathematical Modeling of Biological Systems" 
[27] 
R. J. Smith? and S. D. HoveMusekwa, Determining effective spraying periods to control malaria via indoor residual spraying in subSaharan Africa, Journal of Applied Mathematics and Decision Sciences, 2008 (2008), 19 pp. 
[28] 
R. J. Smith? and E. J. Schwartz, Predicting the potential impact of a cytotoxic Tlymphocyte HIV vaccine: How often should you vaccinate and how strong should the vaccine be?, Math. Biosci., 212 (2008), 180187. 
[29] 
R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint and S. I. Hay, The global distribution of clinical episodes of Plasmodium falciparum malaria, Nature, 434 (2005), 214217. 
[30] 
P. I. Trigg and A. V. Kondrachine, Commentary: Malaria control in the 1990s, Bull. World Health Organ., 76 (1998), 1116. 
[31] 
, “Using Geographical Information Systems for Indoor Residual Spray Area Mapping,” Training Report for the Zambia Ministry of Health, 2007, Available from: http://www.macepalearningcommunity.org/files/IRSGISTrainingReportZambia.pdf. 
show all references
References:
[1] 
N. Asmer, “Partial Differential Equations with Fourier Series and Boundary Value Problems,” Pearson Preatice Hall, USA, 2005. 
[2] 
D. D. Bainov and P. S. Simeonov, “Systems with Impulsive Effect,” Ellis Horwood Ltd, Chichester, 1989. 
[3] 
D. D. Bainov and P. S. Simeonov, “Impulsive Differential Equations: Periodic Solutions and Applications,” Longman Scientific and Technical, Burnt Mill, 1993. 
[4] 
D. D. Bainov and P. S. Simeonov, “Impulsive Differential Equations: Asymptotic Properties of the Solutions,” World Scientific, Singapore, 1995. 
[5] 
P. F. Beales, V. S. Orlov and R. L. Kouynetsov, eds., “Malaria and Planning for its Control in Tropical Africa,” Moscow, WHO and UNDP, 1989. 
[6] 
J. G. Breman, M. S. Alilio and A. Mills, Conquering the intolerable burden of malaria: What's new, what's needed: A summary, Am. J. Trop. Med. Hyg., 71 (2004), 115. 
[7] 
R. Carter, K. N. Mendis and D. Roberts, Spatial targeting of interventions against malaria, Bulletin of the World Health Organization, 78 (2000), 14011411. 
[8] 
J. De Zuletta, G. W. Kafuko, A. W. R. McCrae, et al., A malaria eradication experiment in the highlands of Kigezi (Uganda), East African Medical Journal, 41 (1964), 102120. 
[9] 
R. El Attar, “Special Functions and Orthogonal Polynomials,” Lula Press, USA, 2006. 
[10] 
M. Finkel, Malaria: Stopping a global killer, National Geographic, July 2007. 
[11] 
W. A. Foster, Mosquito sugar feeding and reproductive energetics, Annu. Rev. Entomol., 40 (1995), 443474. 
[12] 
C. GarrettJones, Prognosis for interruption of malaria transmission through assessment of the mosquito's vectorial capacity, Nature, 204 (1964), 11731174. 
[13] 
T. A. Ghebreyesus, M. Haile, K. H. Witten, A. Getachew, M. Yohannes, S. W. Lindsay and P. Byass, Household risk factors for malaria among children in the Ethiopian highlands, Trans. R. Soc. Trop. Med. Hyg., 94 (2000), 1721. 
[14] 
, “Global Malaria Programme: Indoor Residual Spraying,” Report of the World Health Organization, 2006. Available from: http://whqlibdoc.who.int/hq/2006/WHO_HTM_MAL_2006.1112_eng.pdf. 
[15] 
G. Hasibeder and C. Dye, Population dynamics of mosquitoborne disease: Persistence in a completely heterogeneous environment, Theor. Pop. Biol., 33 (1988), 3153. 
[16] 
J. Keiser, J. Utzinger, M. Caldas de Castro, T. A. Smith, M. Tanner and B. H. Singer, Urbanization in subSaharan Africa and implication for malaria control, Am. J. Trop. Med. Hyg., 71 (2 Suppl) (2004), 118127. 
[17] 
R. I. Kouznetsov, Malaria control by application of indoor spraying of residual insecticides in tropical Africa and its impact on population health, Tropical Doctor, 7 (1977), 8191. 
[18] 
V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, “Theory of Impulsive Differential Equations,” World Scientific, Singapore, 1989. 
[19] 
A. D. Lopez, C. D. Mathers, M. Ezzati, D. T. Jamison and C. J. Murray, Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data, Lancet, 367 (2006), 17471757. doi: 10.1016/S01406736(06)687709. 
[20] 
M. L. Mabaso, B. Sharp and C. Lengeler, Historical review of malarial control in southern Africa with emphasis on the use of indoor residual housespraying, Trop. Med. Int. Health, 9 (2004), 846856. 
[21] 
K. Macintyre, J. Keating, Y. B. Okbaldt, M. Zerom, S. Sosler, T. Ghebremeskel and T. P. Eisele, Rolling out insecticide treated nets in Eritrea: Examining the determinants of possession and use in malarious zones during the rainy season, Trop. Med. Int. Health, 11 (2006), 824833. 
[22] 
N. Maidana and H. Yang, A spatial model to describe the dengue propagation, TEMA Tend. Mat. Apl. Comput., 8 (2007), 8392. 
[23] 
E. A. C. Newton and P. Rieter, A model of the transmission of Dengue Fever with an evaluation of the impact of UltraLow Volume (ULV) insecticide applications on Dengue epidemics, Am. J. Trop. Med. Hyg., 47 (1992), 709720. 
[24] 
A. Polyanin and A. Manzhirov, “Handbook of Integral Equations,” 2^{nd} edition, Chapman and Hall/CRC, 2008. doi: 10.1201/9781420010558. 
[25] 
K. D. Silué, G. Raso, A. Yapi, P. Vounatsou, M. Tanner, E. K. Ńgoran and J. Utzinger, Spatiallyexplicit risk profiling of Plasmodium falciparum infections at a small scale: A geostatistical modelling approach, Malar J., 7 (2008), 111. doi: 10.1186/147528757111. 
[26] 
R. J. Smith?, Could lowefficacy malaria vaccines increase secondary infections in endemic areas?, in “Mathematical Modeling of Biological Systems" 
[27] 
R. J. Smith? and S. D. HoveMusekwa, Determining effective spraying periods to control malaria via indoor residual spraying in subSaharan Africa, Journal of Applied Mathematics and Decision Sciences, 2008 (2008), 19 pp. 
[28] 
R. J. Smith? and E. J. Schwartz, Predicting the potential impact of a cytotoxic Tlymphocyte HIV vaccine: How often should you vaccinate and how strong should the vaccine be?, Math. Biosci., 212 (2008), 180187. 
[29] 
R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint and S. I. Hay, The global distribution of clinical episodes of Plasmodium falciparum malaria, Nature, 434 (2005), 214217. 
[30] 
P. I. Trigg and A. V. Kondrachine, Commentary: Malaria control in the 1990s, Bull. World Health Organ., 76 (1998), 1116. 
[31] 
, “Using Geographical Information Systems for Indoor Residual Spray Area Mapping,” Training Report for the Zambia Ministry of Health, 2007, Available from: http://www.macepalearningcommunity.org/files/IRSGISTrainingReportZambia.pdf. 
[1] 
Jia Li. A malaria model with partial immunity in humans. Mathematical Biosciences & Engineering, 2008, 5 (4) : 789801. doi: 10.3934/mbe.2008.5.789 
[2] 
W. E. Fitzgibbon, M.E. Parrott, Glenn Webb. Diffusive epidemic models with spatial and age dependent heterogeneity. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 3557. doi: 10.3934/dcds.1995.1.35 
[3] 
YuXia Wang, WanTong Li. Combined effects of the spatial heterogeneity and the functional response. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 1939. doi: 10.3934/dcds.2019002 
[4] 
YuanHang Su, WanTong Li, FeiYing Yang. Effects of nonlocal dispersal and spatial heterogeneity on total biomass. Discrete and Continuous Dynamical Systems  B, 2019, 24 (9) : 49294936. doi: 10.3934/dcdsb.2019038 
[5] 
Xiaoyan Zhang, Yuxiang Zhang. Spatial dynamics of a reactiondiffusion cholera model with spatial heterogeneity. Discrete and Continuous Dynamical Systems  B, 2018, 23 (6) : 26252640. doi: 10.3934/dcdsb.2018124 
[6] 
Herbert Koch. Partial differential equations with nonEuclidean geometries. Discrete and Continuous Dynamical Systems  S, 2008, 1 (3) : 481504. doi: 10.3934/dcdss.2008.1.481 
[7] 
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 471487. doi: 10.3934/dcds.2020264 
[8] 
Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703723. doi: 10.3934/dcds.2006.15.703 
[9] 
Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure and Applied Analysis, 2009, 8 (3) : 10531065. doi: 10.3934/cpaa.2009.8.1053 
[10] 
Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete and Continuous Dynamical Systems  B, 2010, 14 (2) : 515557. doi: 10.3934/dcdsb.2010.14.515 
[11] 
Barbara AbrahamShrauner. Exact solutions of nonlinear partial differential equations. Discrete and Continuous Dynamical Systems  S, 2018, 11 (4) : 577582. doi: 10.3934/dcdss.2018032 
[12] 
Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete and Continuous Dynamical Systems  B, 2017, 22 (8) : 31273144. doi: 10.3934/dcdsb.2017167 
[13] 
Runzhang Xu. Preface: Special issue on advances in partial differential equations. Discrete and Continuous Dynamical Systems  S, 2021, 14 (12) : ii. doi: 10.3934/dcdss.2021137 
[14] 
Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure and Applied Analysis, 2011, 10 (5) : 13451360. doi: 10.3934/cpaa.2011.10.1345 
[15] 
Roger M. Nisbet, Kurt E. Anderson, Edward McCauley, Mark A. Lewis. Response of equilibrium states to spatial environmental heterogeneity in advective systems. Mathematical Biosciences & Engineering, 2007, 4 (1) : 113. doi: 10.3934/mbe.2007.4.1 
[16] 
Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete and Continuous Dynamical Systems  B, 2019, 24 (2) : 467486. doi: 10.3934/dcdsb.2018182 
[17] 
Stephen Pankavich, Christian Parkinson. Mathematical analysis of an inhost model of viral dynamics with spatial heterogeneity. Discrete and Continuous Dynamical Systems  B, 2016, 21 (4) : 12371257. doi: 10.3934/dcdsb.2016.21.1237 
[18] 
Min Yang, Guanggan Chen. Finite dimensional reducing and smooth approximating for a class of stochastic partial differential equations. Discrete and Continuous Dynamical Systems  B, 2020, 25 (4) : 15651581. doi: 10.3934/dcdsb.2019240 
[19] 
Frédéric Mazenc, Christophe Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathematical Control and Related Fields, 2011, 1 (2) : 231250. doi: 10.3934/mcrf.2011.1.231 
[20] 
Paul Bracken. Connections of zero curvature and applications to nonlinear partial differential equations. Discrete and Continuous Dynamical Systems  S, 2014, 7 (6) : 11651179. doi: 10.3934/dcdss.2014.7.1165 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]