2011, 8(4): 889-914. doi: 10.3934/mbe.2011.8.889

Controlling malaria with indoor residual spraying in spatially heterogenous environments

1. 

Department of Mathematics, The University of Ottawa, 585 King Edward Ave Ottawa, ON K1N 6N5, Canada

2. 

Department of Mathematics and Faculty of Medicine, The University of Ottawa, 585 King Edward Ave Ottawa, ON K1N 6N5, Canada

Received  December 2010 Revised  March 2011 Published  August 2011

Indoor residual spraying – spraying insecticide inside houses to kill mosquitoes – has been one of the most effective methods of disease control ever devised, being responsible for the near-eradication of malaria from the world in the third quarter of the twentieth century and saving tens of millions of lives. However, with malaria resurgence currently underway, it has received relatively little attention, been applied only in select physical locations and not always at regular intervals. We extend a time-dependent model of malaria spraying to include spatial heterogeneity and address the following research questions: 1. What are the effects of spraying in different geographical areas? 2. How do the results depend upon the regularity of spraying? 3. Can we alter our control strategies to account for asymmetric phenomena such as wind? We use impulsive partial differential equation models to derive thresholds for malaria control when spraying occurs uniformly, within an interior disc or under asymmetric advection effects. Spatial heterogeneity results in an increase in the necessary frequency of spraying, but control is still achievable.
Citation: Mo'tassem Al-Arydah, Robert Smith?. Controlling malaria with indoor residual spraying in spatially heterogenous environments. Mathematical Biosciences & Engineering, 2011, 8 (4) : 889-914. doi: 10.3934/mbe.2011.8.889
References:
[1]

N. Asmer, “Partial Differential Equations with Fourier Series and Boundary Value Problems,”, Pearson Preatice Hall, (2005).   Google Scholar

[2]

D. D. Bainov and P. S. Simeonov, “Systems with Impulsive Effect,”, Ellis Horwood Ltd, (1989).   Google Scholar

[3]

D. D. Bainov and P. S. Simeonov, “Impulsive Differential Equations: Periodic Solutions and Applications,”, Longman Scientific and Technical, (1993).   Google Scholar

[4]

D. D. Bainov and P. S. Simeonov, “Impulsive Differential Equations: Asymptotic Properties of the Solutions,”, World Scientific, (1995).   Google Scholar

[5]

P. F. Beales, V. S. Orlov and R. L. Kouynetsov, eds., “Malaria and Planning for its Control in Tropical Africa,”, Moscow, (1989).   Google Scholar

[6]

J. G. Breman, M. S. Alilio and A. Mills, Conquering the intolerable burden of malaria: What's new, what's needed: A summary,, Am. J. Trop. Med. Hyg., 71 (2004), 1.   Google Scholar

[7]

R. Carter, K. N. Mendis and D. Roberts, Spatial targeting of interventions against malaria,, Bulletin of the World Health Organization, 78 (2000), 1401.   Google Scholar

[8]

J. De Zuletta, G. W. Kafuko, A. W. R. McCrae, et al., A malaria eradication experiment in the highlands of Kigezi (Uganda),, East African Medical Journal, 41 (1964), 102.   Google Scholar

[9]

R. El Attar, “Special Functions and Orthogonal Polynomials,”, Lula Press, (2006).   Google Scholar

[10]

M. Finkel, Malaria: Stopping a global killer,, National Geographic, (2007).   Google Scholar

[11]

W. A. Foster, Mosquito sugar feeding and reproductive energetics,, Annu. Rev. Entomol., 40 (1995), 443.   Google Scholar

[12]

C. Garrett-Jones, Prognosis for interruption of malaria transmission through assessment of the mosquito's vectorial capacity,, Nature, 204 (1964), 1173.   Google Scholar

[13]

T. A. Ghebreyesus, M. Haile, K. H. Witten, A. Getachew, M. Yohannes, S. W. Lindsay and P. Byass, Household risk factors for malaria among children in the Ethiopian highlands,, Trans. R. Soc. Trop. Med. Hyg., 94 (2000), 17.   Google Scholar

[14]

, “Global Malaria Programme: Indoor Residual Spraying,” Report of the World Health Organization,, 2006. Available from: , ().   Google Scholar

[15]

G. Hasibeder and C. Dye, Population dynamics of mosquito-borne disease: Persistence in a completely heterogeneous environment,, Theor. Pop. Biol., 33 (1988), 31.   Google Scholar

[16]

J. Keiser, J. Utzinger, M. Caldas de Castro, T. A. Smith, M. Tanner and B. H. Singer, Urbanization in sub-Saharan Africa and implication for malaria control,, Am. J. Trop. Med. Hyg., 71 (2004), 118.   Google Scholar

[17]

R. I. Kouznetsov, Malaria control by application of indoor spraying of residual insecticides in tropical Africa and its impact on population health,, Tropical Doctor, 7 (1977), 81.   Google Scholar

[18]

V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, “Theory of Impulsive Differential Equations,”, World Scientific, (1989).   Google Scholar

[19]

A. D. Lopez, C. D. Mathers, M. Ezzati, D. T. Jamison and C. J. Murray, Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data,, Lancet, 367 (2006), 1747.  doi: 10.1016/S0140-6736(06)68770-9.  Google Scholar

[20]

M. L. Mabaso, B. Sharp and C. Lengeler, Historical review of malarial control in southern Africa with emphasis on the use of indoor residual house-spraying,, Trop. Med. Int. Health, 9 (2004), 846.   Google Scholar

[21]

K. Macintyre, J. Keating, Y. B. Okbaldt, M. Zerom, S. Sosler, T. Ghebremeskel and T. P. Eisele, Rolling out insecticide treated nets in Eritrea: Examining the determinants of possession and use in malarious zones during the rainy season,, Trop. Med. Int. Health, 11 (2006), 824.   Google Scholar

[22]

N. Maidana and H. Yang, A spatial model to describe the dengue propagation,, TEMA Tend. Mat. Apl. Comput., 8 (2007), 83.   Google Scholar

[23]

E. A. C. Newton and P. Rieter, A model of the transmission of Dengue Fever with an evaluation of the impact of Ultra-Low Volume (ULV) insecticide applications on Dengue epidemics,, Am. J. Trop. Med. Hyg., 47 (1992), 709.   Google Scholar

[24]

A. Polyanin and A. Manzhirov, “Handbook of Integral Equations,”, 2nd edition, (2008).  doi: 10.1201/9781420010558.  Google Scholar

[25]

K. D. Silué, G. Raso, A. Yapi, P. Vounatsou, M. Tanner, E. K. Ńgoran and J. Utzinger, Spatially-explicit risk profiling of Plasmodium falciparum infections at a small scale: A geostatistical modelling approach,, Malar J., 7 (2008).  doi: 10.1186/1475-2875-7-111.  Google Scholar

[26]

R. J. Smith?, Could low-efficacy malaria vaccines increase secondary infections in endemic areas?,, in “Mathematical Modeling of Biological Systems, ().   Google Scholar

[27]

R. J. Smith? and S. D. Hove-Musekwa, Determining effective spraying periods to control malaria via indoor residual spraying in sub-Saharan Africa,, Journal of Applied Mathematics and Decision Sciences, 2008 (2008).   Google Scholar

[28]

R. J. Smith? and E. J. Schwartz, Predicting the potential impact of a cytotoxic T-lymphocyte HIV vaccine: How often should you vaccinate and how strong should the vaccine be?,, Math. Biosci., 212 (2008), 180.   Google Scholar

[29]

R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint and S. I. Hay, The global distribution of clinical episodes of Plasmodium falciparum malaria,, Nature, 434 (2005), 214.   Google Scholar

[30]

P. I. Trigg and A. V. Kondrachine, Commentary: Malaria control in the 1990s,, Bull. World Health Organ., 76 (1998), 11.   Google Scholar

[31]

, “Using Geographical Information Systems for Indoor Residual Spray Area Mapping,” Training Report for the Zambia Ministry of Health,, 2007, ().   Google Scholar

show all references

References:
[1]

N. Asmer, “Partial Differential Equations with Fourier Series and Boundary Value Problems,”, Pearson Preatice Hall, (2005).   Google Scholar

[2]

D. D. Bainov and P. S. Simeonov, “Systems with Impulsive Effect,”, Ellis Horwood Ltd, (1989).   Google Scholar

[3]

D. D. Bainov and P. S. Simeonov, “Impulsive Differential Equations: Periodic Solutions and Applications,”, Longman Scientific and Technical, (1993).   Google Scholar

[4]

D. D. Bainov and P. S. Simeonov, “Impulsive Differential Equations: Asymptotic Properties of the Solutions,”, World Scientific, (1995).   Google Scholar

[5]

P. F. Beales, V. S. Orlov and R. L. Kouynetsov, eds., “Malaria and Planning for its Control in Tropical Africa,”, Moscow, (1989).   Google Scholar

[6]

J. G. Breman, M. S. Alilio and A. Mills, Conquering the intolerable burden of malaria: What's new, what's needed: A summary,, Am. J. Trop. Med. Hyg., 71 (2004), 1.   Google Scholar

[7]

R. Carter, K. N. Mendis and D. Roberts, Spatial targeting of interventions against malaria,, Bulletin of the World Health Organization, 78 (2000), 1401.   Google Scholar

[8]

J. De Zuletta, G. W. Kafuko, A. W. R. McCrae, et al., A malaria eradication experiment in the highlands of Kigezi (Uganda),, East African Medical Journal, 41 (1964), 102.   Google Scholar

[9]

R. El Attar, “Special Functions and Orthogonal Polynomials,”, Lula Press, (2006).   Google Scholar

[10]

M. Finkel, Malaria: Stopping a global killer,, National Geographic, (2007).   Google Scholar

[11]

W. A. Foster, Mosquito sugar feeding and reproductive energetics,, Annu. Rev. Entomol., 40 (1995), 443.   Google Scholar

[12]

C. Garrett-Jones, Prognosis for interruption of malaria transmission through assessment of the mosquito's vectorial capacity,, Nature, 204 (1964), 1173.   Google Scholar

[13]

T. A. Ghebreyesus, M. Haile, K. H. Witten, A. Getachew, M. Yohannes, S. W. Lindsay and P. Byass, Household risk factors for malaria among children in the Ethiopian highlands,, Trans. R. Soc. Trop. Med. Hyg., 94 (2000), 17.   Google Scholar

[14]

, “Global Malaria Programme: Indoor Residual Spraying,” Report of the World Health Organization,, 2006. Available from: , ().   Google Scholar

[15]

G. Hasibeder and C. Dye, Population dynamics of mosquito-borne disease: Persistence in a completely heterogeneous environment,, Theor. Pop. Biol., 33 (1988), 31.   Google Scholar

[16]

J. Keiser, J. Utzinger, M. Caldas de Castro, T. A. Smith, M. Tanner and B. H. Singer, Urbanization in sub-Saharan Africa and implication for malaria control,, Am. J. Trop. Med. Hyg., 71 (2004), 118.   Google Scholar

[17]

R. I. Kouznetsov, Malaria control by application of indoor spraying of residual insecticides in tropical Africa and its impact on population health,, Tropical Doctor, 7 (1977), 81.   Google Scholar

[18]

V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, “Theory of Impulsive Differential Equations,”, World Scientific, (1989).   Google Scholar

[19]

A. D. Lopez, C. D. Mathers, M. Ezzati, D. T. Jamison and C. J. Murray, Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data,, Lancet, 367 (2006), 1747.  doi: 10.1016/S0140-6736(06)68770-9.  Google Scholar

[20]

M. L. Mabaso, B. Sharp and C. Lengeler, Historical review of malarial control in southern Africa with emphasis on the use of indoor residual house-spraying,, Trop. Med. Int. Health, 9 (2004), 846.   Google Scholar

[21]

K. Macintyre, J. Keating, Y. B. Okbaldt, M. Zerom, S. Sosler, T. Ghebremeskel and T. P. Eisele, Rolling out insecticide treated nets in Eritrea: Examining the determinants of possession and use in malarious zones during the rainy season,, Trop. Med. Int. Health, 11 (2006), 824.   Google Scholar

[22]

N. Maidana and H. Yang, A spatial model to describe the dengue propagation,, TEMA Tend. Mat. Apl. Comput., 8 (2007), 83.   Google Scholar

[23]

E. A. C. Newton and P. Rieter, A model of the transmission of Dengue Fever with an evaluation of the impact of Ultra-Low Volume (ULV) insecticide applications on Dengue epidemics,, Am. J. Trop. Med. Hyg., 47 (1992), 709.   Google Scholar

[24]

A. Polyanin and A. Manzhirov, “Handbook of Integral Equations,”, 2nd edition, (2008).  doi: 10.1201/9781420010558.  Google Scholar

[25]

K. D. Silué, G. Raso, A. Yapi, P. Vounatsou, M. Tanner, E. K. Ńgoran and J. Utzinger, Spatially-explicit risk profiling of Plasmodium falciparum infections at a small scale: A geostatistical modelling approach,, Malar J., 7 (2008).  doi: 10.1186/1475-2875-7-111.  Google Scholar

[26]

R. J. Smith?, Could low-efficacy malaria vaccines increase secondary infections in endemic areas?,, in “Mathematical Modeling of Biological Systems, ().   Google Scholar

[27]

R. J. Smith? and S. D. Hove-Musekwa, Determining effective spraying periods to control malaria via indoor residual spraying in sub-Saharan Africa,, Journal of Applied Mathematics and Decision Sciences, 2008 (2008).   Google Scholar

[28]

R. J. Smith? and E. J. Schwartz, Predicting the potential impact of a cytotoxic T-lymphocyte HIV vaccine: How often should you vaccinate and how strong should the vaccine be?,, Math. Biosci., 212 (2008), 180.   Google Scholar

[29]

R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint and S. I. Hay, The global distribution of clinical episodes of Plasmodium falciparum malaria,, Nature, 434 (2005), 214.   Google Scholar

[30]

P. I. Trigg and A. V. Kondrachine, Commentary: Malaria control in the 1990s,, Bull. World Health Organ., 76 (1998), 11.   Google Scholar

[31]

, “Using Geographical Information Systems for Indoor Residual Spray Area Mapping,” Training Report for the Zambia Ministry of Health,, 2007, ().   Google Scholar

[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[3]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[4]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[5]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[6]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[7]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[8]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[9]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[10]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[11]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[12]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[13]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[14]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[15]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[16]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[17]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[18]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[19]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[20]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]