Citation: |
[1] |
N. Asmer, “Partial Differential Equations with Fourier Series and Boundary Value Problems,” Pearson Preatice Hall, USA, 2005. |
[2] |
D. D. Bainov and P. S. Simeonov, “Systems with Impulsive Effect,” Ellis Horwood Ltd, Chichester, 1989. |
[3] |
D. D. Bainov and P. S. Simeonov, “Impulsive Differential Equations: Periodic Solutions and Applications,” Longman Scientific and Technical, Burnt Mill, 1993. |
[4] |
D. D. Bainov and P. S. Simeonov, “Impulsive Differential Equations: Asymptotic Properties of the Solutions,” World Scientific, Singapore, 1995. |
[5] |
P. F. Beales, V. S. Orlov and R. L. Kouynetsov, eds., “Malaria and Planning for its Control in Tropical Africa,” Moscow, WHO and UNDP, 1989. |
[6] |
J. G. Breman, M. S. Alilio and A. Mills, Conquering the intolerable burden of malaria: What's new, what's needed: A summary, Am. J. Trop. Med. Hyg., 71 (2004), 1-15. |
[7] |
R. Carter, K. N. Mendis and D. Roberts, Spatial targeting of interventions against malaria, Bulletin of the World Health Organization, 78 (2000), 1401-1411. |
[8] |
J. De Zuletta, G. W. Kafuko, A. W. R. McCrae, et al., A malaria eradication experiment in the highlands of Kigezi (Uganda), East African Medical Journal, 41 (1964), 102-120. |
[9] |
R. El Attar, “Special Functions and Orthogonal Polynomials,” Lula Press, USA, 2006. |
[10] |
M. Finkel, Malaria: Stopping a global killer, National Geographic, July 2007. |
[11] |
W. A. Foster, Mosquito sugar feeding and reproductive energetics, Annu. Rev. Entomol., 40 (1995), 443-474. |
[12] |
C. Garrett-Jones, Prognosis for interruption of malaria transmission through assessment of the mosquito's vectorial capacity, Nature, 204 (1964), 1173-1174. |
[13] |
T. A. Ghebreyesus, M. Haile, K. H. Witten, A. Getachew, M. Yohannes, S. W. Lindsay and P. Byass, Household risk factors for malaria among children in the Ethiopian highlands, Trans. R. Soc. Trop. Med. Hyg., 94 (2000), 17-21. |
[14] |
“Global Malaria Programme: Indoor Residual Spraying,” Report of the World Health Organization, 2006. Available from: http://whqlibdoc.who.int/hq/2006/WHO_HTM_MAL_2006.1112_eng.pdf. |
[15] |
G. Hasibeder and C. Dye, Population dynamics of mosquito-borne disease: Persistence in a completely heterogeneous environment, Theor. Pop. Biol., 33 (1988), 31-53. |
[16] |
J. Keiser, J. Utzinger, M. Caldas de Castro, T. A. Smith, M. Tanner and B. H. Singer, Urbanization in sub-Saharan Africa and implication for malaria control, Am. J. Trop. Med. Hyg., 71 (2 Suppl) (2004), 118-127. |
[17] |
R. I. Kouznetsov, Malaria control by application of indoor spraying of residual insecticides in tropical Africa and its impact on population health, Tropical Doctor, 7 (1977), 81-91. |
[18] |
V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, “Theory of Impulsive Differential Equations,” World Scientific, Singapore, 1989. |
[19] |
A. D. Lopez, C. D. Mathers, M. Ezzati, D. T. Jamison and C. J. Murray, Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data, Lancet, 367 (2006), 1747-1757.doi: 10.1016/S0140-6736(06)68770-9. |
[20] |
M. L. Mabaso, B. Sharp and C. Lengeler, Historical review of malarial control in southern Africa with emphasis on the use of indoor residual house-spraying, Trop. Med. Int. Health, 9 (2004), 846-856. |
[21] |
K. Macintyre, J. Keating, Y. B. Okbaldt, M. Zerom, S. Sosler, T. Ghebremeskel and T. P. Eisele, Rolling out insecticide treated nets in Eritrea: Examining the determinants of possession and use in malarious zones during the rainy season, Trop. Med. Int. Health, 11 (2006), 824-833. |
[22] |
N. Maidana and H. Yang, A spatial model to describe the dengue propagation, TEMA Tend. Mat. Apl. Comput., 8 (2007), 83-92. |
[23] |
E. A. C. Newton and P. Rieter, A model of the transmission of Dengue Fever with an evaluation of the impact of Ultra-Low Volume (ULV) insecticide applications on Dengue epidemics, Am. J. Trop. Med. Hyg., 47 (1992), 709-720. |
[24] |
A. Polyanin and A. Manzhirov, “Handbook of Integral Equations,” 2nd edition, Chapman and Hall/CRC, 2008.doi: 10.1201/9781420010558. |
[25] |
K. D. Silué, G. Raso, A. Yapi, P. Vounatsou, M. Tanner, E. K. Ńgoran and J. Utzinger, Spatially-explicit risk profiling of Plasmodium falciparum infections at a small scale: A geostatistical modelling approach, Malar J., 7 (2008), 111.doi: 10.1186/1475-2875-7-111. |
[26] |
R. J. Smith?, Could low-efficacy malaria vaccines increase secondary infections in endemic areas?, in “Mathematical Modeling of Biological Systems" |
[27] |
R. J. Smith? and S. D. Hove-Musekwa, Determining effective spraying periods to control malaria via indoor residual spraying in sub-Saharan Africa, Journal of Applied Mathematics and Decision Sciences, 2008 (2008), 19 pp. |
[28] |
R. J. Smith? and E. J. Schwartz, Predicting the potential impact of a cytotoxic T-lymphocyte HIV vaccine: How often should you vaccinate and how strong should the vaccine be?, Math. Biosci., 212 (2008), 180-187. |
[29] |
R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint and S. I. Hay, The global distribution of clinical episodes of Plasmodium falciparum malaria, Nature, 434 (2005), 214-217. |
[30] |
P. I. Trigg and A. V. Kondrachine, Commentary: Malaria control in the 1990s, Bull. World Health Organ., 76 (1998), 11-16. |
[31] |
“Using Geographical Information Systems for Indoor Residual Spray Area Mapping,” Training Report for the Zambia Ministry of Health, 2007, Available from: http://www.macepalearningcommunity.org/files/IRSGISTrainingReportZambia.pdf. |