-
Previous Article
An SEIR epidemic model with constant latency time and infectious period
- MBE Home
- This Issue
-
Next Article
Controlling malaria with indoor residual spraying in spatially heterogenous environments
A mathematical model of the Purkinje-Muscle Junctions
1. | Université de Nantes, Laboratoire de Mathématiques Jean Leray, Nantes, France, France, France |
2. | INRIA, REO team, Rocquencourt, France |
References:
[1] |
A. V. Aslanidi, P. Stewart, M. R. Boyett and H. Zhang, Optimal velocity and safety of discontinuous conduction through the heterogeneous purkinje-ventricular junction,, Biophysical Journal, (2009). Google Scholar |
[2] |
G. Beeler and H. Reuter., Reconstruction of the action potential of ventricular myocardial fibres,, J. Physiol. (Lond.), 268 (1977), 177. Google Scholar |
[3] |
O. Berenfeld and J. Jalife, Purkinje-muscle rentry as a mechanism of polymorphic ventricular arrhytmias in a 3-dimensional model of the ventricles,, Circ. Res., 82 (1998), 1063. Google Scholar |
[4] |
M. Boulakia, S. Cazeau, M. A. Fernández, J. F. Gerbeau and N. Zemzemi, Mathematical modeling of electrocardiograms: A numerical study,, Annals of Biomedical Engineering, 38 (2010), 1071. Google Scholar |
[5] |
M. Boulakia, M. A. Fernández, J.-F. Gerbeau and N. Zemzemi, Towards the numerical simulation of electrocardiograms,, in, (2007), 240. Google Scholar |
[6] |
P. M. Boyle, M. Deo, G. Plank and E. J. Vigmond, Purkinje-mdeiated effects in the response of quiescent ventricles to defibrillation shocks,, Annals of Biomedical Engineering, (2009). Google Scholar |
[7] |
P. G. Ciarlet, "The Finite Element Method for Elliptic Problems,", North-Holland, (1978). Google Scholar |
[8] |
D. DiFrancesco and D. Noble, A model of cardiac electrical activity incorporating ionic pumps and concentration changes,, Phil. Trans. R. Soc. Lond., 307 (1985), 353.
doi: 10.1098/rstb.1985.0001. |
[9] |
Philip E. Gill, Walter Murray and Margaret H. Wright, "Practical Optimization,", Academic Press Inc., (1981). Google Scholar |
[10] |
C. S. Henriquez, A. L. Muzikant and C.K. Smoak, Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: Simulations in a three-dimensional bidomain model,, Journal of Cardiovascular Electrophysiology, 7 (1996), 424. Google Scholar |
[11] |
B. Milan Horacek, K. Simelius, R. Hren and J. Nenonen, Challenges in modelling human heart's total excitation,, in, (2001), 39. Google Scholar |
[12] |
J. Keener and J. Sneyd, "Mathematical Physiology,", Springer, (1998). Google Scholar |
[13] |
M. Potse, B. Dube, J. Richer, A. Vinet and R. M. Gulrajani, A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart,, IEEE Transactions on Biomedical Engineering, (2006). Google Scholar |
[14] |
J. C. Neu and W. Krassowska, Homogenization of syncytial tissues,, Crit. Rev. Biomed. Eng., 21 (1993), 137. Google Scholar |
[15] |
A. E. Pollard and R. C. Barr, The construction of an anatomically based model of the human ventricular conduction system,, IEEE Transaction on Biomedical Engineering, 37 (1990), 1173.
doi: 10.1109/10.64460. |
[16] |
W. B. Ross, S. M. Mohiuddin, T. Pagano and D. Hughes, Malposition of a transvenous cardiac electrode associated with amaurosis fugax,, Pacing and Clinical Electrophysiology, 6 (1983), 119.
doi: 10.1111/j.1540-8159.1983.tb06589.x. |
[17] |
W. A. Schiavone, L. O. N. W. Castle, E. Salcedo and R. Graor, Amaurosis fugax in a patient with a left ventricular endocardial pacemaker,, Pacing and Clinical Electrophysiology, 7 (1984), 288.
doi: 10.1111/j.1540-8159.1984.tb04901.x. |
[18] |
K. H. W. J. Ten Tusscher and A. V. Panfilov, Modelling of the ventricular conduction system,, Progress in Biophysics and Molecular Biology, (2008). Google Scholar |
[19] |
E. J. Vigmond and C. Clements, Construction of a computer model to investigate sawtooth efects in the purkinje system,, IEEE Transaction on Biomedical Engineering, 54 (2007).
doi: 10.1109/TBME.2006.888817. |
show all references
References:
[1] |
A. V. Aslanidi, P. Stewart, M. R. Boyett and H. Zhang, Optimal velocity and safety of discontinuous conduction through the heterogeneous purkinje-ventricular junction,, Biophysical Journal, (2009). Google Scholar |
[2] |
G. Beeler and H. Reuter., Reconstruction of the action potential of ventricular myocardial fibres,, J. Physiol. (Lond.), 268 (1977), 177. Google Scholar |
[3] |
O. Berenfeld and J. Jalife, Purkinje-muscle rentry as a mechanism of polymorphic ventricular arrhytmias in a 3-dimensional model of the ventricles,, Circ. Res., 82 (1998), 1063. Google Scholar |
[4] |
M. Boulakia, S. Cazeau, M. A. Fernández, J. F. Gerbeau and N. Zemzemi, Mathematical modeling of electrocardiograms: A numerical study,, Annals of Biomedical Engineering, 38 (2010), 1071. Google Scholar |
[5] |
M. Boulakia, M. A. Fernández, J.-F. Gerbeau and N. Zemzemi, Towards the numerical simulation of electrocardiograms,, in, (2007), 240. Google Scholar |
[6] |
P. M. Boyle, M. Deo, G. Plank and E. J. Vigmond, Purkinje-mdeiated effects in the response of quiescent ventricles to defibrillation shocks,, Annals of Biomedical Engineering, (2009). Google Scholar |
[7] |
P. G. Ciarlet, "The Finite Element Method for Elliptic Problems,", North-Holland, (1978). Google Scholar |
[8] |
D. DiFrancesco and D. Noble, A model of cardiac electrical activity incorporating ionic pumps and concentration changes,, Phil. Trans. R. Soc. Lond., 307 (1985), 353.
doi: 10.1098/rstb.1985.0001. |
[9] |
Philip E. Gill, Walter Murray and Margaret H. Wright, "Practical Optimization,", Academic Press Inc., (1981). Google Scholar |
[10] |
C. S. Henriquez, A. L. Muzikant and C.K. Smoak, Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: Simulations in a three-dimensional bidomain model,, Journal of Cardiovascular Electrophysiology, 7 (1996), 424. Google Scholar |
[11] |
B. Milan Horacek, K. Simelius, R. Hren and J. Nenonen, Challenges in modelling human heart's total excitation,, in, (2001), 39. Google Scholar |
[12] |
J. Keener and J. Sneyd, "Mathematical Physiology,", Springer, (1998). Google Scholar |
[13] |
M. Potse, B. Dube, J. Richer, A. Vinet and R. M. Gulrajani, A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart,, IEEE Transactions on Biomedical Engineering, (2006). Google Scholar |
[14] |
J. C. Neu and W. Krassowska, Homogenization of syncytial tissues,, Crit. Rev. Biomed. Eng., 21 (1993), 137. Google Scholar |
[15] |
A. E. Pollard and R. C. Barr, The construction of an anatomically based model of the human ventricular conduction system,, IEEE Transaction on Biomedical Engineering, 37 (1990), 1173.
doi: 10.1109/10.64460. |
[16] |
W. B. Ross, S. M. Mohiuddin, T. Pagano and D. Hughes, Malposition of a transvenous cardiac electrode associated with amaurosis fugax,, Pacing and Clinical Electrophysiology, 6 (1983), 119.
doi: 10.1111/j.1540-8159.1983.tb06589.x. |
[17] |
W. A. Schiavone, L. O. N. W. Castle, E. Salcedo and R. Graor, Amaurosis fugax in a patient with a left ventricular endocardial pacemaker,, Pacing and Clinical Electrophysiology, 7 (1984), 288.
doi: 10.1111/j.1540-8159.1984.tb04901.x. |
[18] |
K. H. W. J. Ten Tusscher and A. V. Panfilov, Modelling of the ventricular conduction system,, Progress in Biophysics and Molecular Biology, (2008). Google Scholar |
[19] |
E. J. Vigmond and C. Clements, Construction of a computer model to investigate sawtooth efects in the purkinje system,, IEEE Transaction on Biomedical Engineering, 54 (2007).
doi: 10.1109/TBME.2006.888817. |
[1] |
Tobias Breiten, Karl Kunisch. Boundary feedback stabilization of the monodomain equations. Mathematical Control & Related Fields, 2017, 7 (3) : 369-391. doi: 10.3934/mcrf.2017013 |
[2] |
Anna Kaźmierczak, Jan Sokolowski, Antoni Zochowski. Drag minimization for the obstacle in compressible flow using shape derivatives and finite volumes. Mathematical Control & Related Fields, 2018, 8 (1) : 89-115. doi: 10.3934/mcrf.2018004 |
[3] |
Guillaume Costeseque, Jean-Patrick Lebacque. Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 411-433. doi: 10.3934/dcdss.2014.7.411 |
[4] |
Daniel Guan. Classification of compact complex homogeneous spaces with invariant volumes. Electronic Research Announcements, 1997, 3: 90-92. |
[5] |
Vitali Milman, Liran Rotem. $\alpha$-concave functions and a functional extension of mixed volumes. Electronic Research Announcements, 2013, 20: 1-11. doi: 10.3934/era.2013.20.1 |
[6] |
Daniela Calvetti, Jenni Heino, Erkki Somersalo, Knarik Tunyan. Bayesian stationary state flux balance analysis for a skeletal muscle metabolic model. Inverse Problems & Imaging, 2007, 1 (2) : 247-263. doi: 10.3934/ipi.2007.1.247 |
[7] |
Mauro Garavello. The LWR traffic model at a junction with multibuffers. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 463-482. doi: 10.3934/dcdss.2014.7.463 |
[8] |
Juan Carlos Marrero. Hamiltonian mechanical systems on Lie algebroids, unimodularity and preservation of volumes. Journal of Geometric Mechanics, 2010, 2 (3) : 243-263. doi: 10.3934/jgm.2010.2.243 |
[9] |
Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59 |
[10] |
Rinaldo M. Colombo, Mauro Garavello. A Well Posed Riemann Problem for the $p$--System at a Junction. Networks & Heterogeneous Media, 2006, 1 (3) : 495-511. doi: 10.3934/nhm.2006.1.495 |
[11] |
Tomasz Dobrowolski. The dynamics of the kink in curved large area Josephson junction. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1095-1105. doi: 10.3934/dcdss.2011.4.1095 |
[12] |
Alberto Bressan, Fang Yu. Continuous Riemann solvers for traffic flow at a junction. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4149-4171. doi: 10.3934/dcds.2015.35.4149 |
[13] |
Mauro Garavello, Francesca Marcellini. The Riemann Problem at a Junction for a Phase Transition Traffic Model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5191-5209. doi: 10.3934/dcds.2017225 |
[14] |
Xiaohai Wan, Zhilin Li. Some new finite difference methods for Helmholtz equations on irregular domains or with interfaces. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1155-1174. doi: 10.3934/dcdsb.2012.17.1155 |
[15] |
Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665 |
[16] |
Ning Ju. The finite dimensional global attractor for the 3D viscous Primitive Equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7001-7020. doi: 10.3934/dcds.2016104 |
[17] |
Yuusuke Sugiyama. Degeneracy in finite time of 1D quasilinear wave equations Ⅱ. Evolution Equations & Control Theory, 2017, 6 (4) : 615-628. doi: 10.3934/eect.2017031 |
[18] |
Jonathan Touboul. Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control & Related Fields, 2012, 2 (4) : 429-455. doi: 10.3934/mcrf.2012.2.429 |
[19] |
François Alouges. A new finite element scheme for Landau-Lifchitz equations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 187-196. doi: 10.3934/dcdss.2008.1.187 |
[20] |
Hong Wang, Aijie Cheng, Kaixin Wang. Fast finite volume methods for space-fractional diffusion equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1427-1441. doi: 10.3934/dcdsb.2015.20.1427 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]