2011, 8(4): 915-930. doi: 10.3934/mbe.2011.8.915

A mathematical model of the Purkinje-Muscle Junctions

1. 

Université de Nantes, Laboratoire de Mathématiques Jean Leray, Nantes, France, France, France

2. 

INRIA, REO team, Rocquencourt, France

Received  October 2010 Revised  May 2011 Published  August 2011

This paper is devoted to the construction of a mathematical model of the His-Purkinje tree and the Purkinje-Muscle Junctions (PMJ). A simple numerical scheme is proposed in order to perform some simple numerical experiments.
Citation: Adnane Azzouzi, Yves Coudière, Rodolphe Turpault, Nejib Zemzemi. A mathematical model of the Purkinje-Muscle Junctions. Mathematical Biosciences & Engineering, 2011, 8 (4) : 915-930. doi: 10.3934/mbe.2011.8.915
References:
[1]

A. V. Aslanidi, P. Stewart, M. R. Boyett and H. Zhang, Optimal velocity and safety of discontinuous conduction through the heterogeneous purkinje-ventricular junction,, Biophysical Journal, (2009).   Google Scholar

[2]

G. Beeler and H. Reuter., Reconstruction of the action potential of ventricular myocardial fibres,, J. Physiol. (Lond.), 268 (1977), 177.   Google Scholar

[3]

O. Berenfeld and J. Jalife, Purkinje-muscle rentry as a mechanism of polymorphic ventricular arrhytmias in a 3-dimensional model of the ventricles,, Circ. Res., 82 (1998), 1063.   Google Scholar

[4]

M. Boulakia, S. Cazeau, M. A. Fernández, J. F. Gerbeau and N. Zemzemi, Mathematical modeling of electrocardiograms: A numerical study,, Annals of Biomedical Engineering, 38 (2010), 1071.   Google Scholar

[5]

M. Boulakia, M. A. Fernández, J.-F. Gerbeau and N. Zemzemi, Towards the numerical simulation of electrocardiograms,, in, (2007), 240.   Google Scholar

[6]

P. M. Boyle, M. Deo, G. Plank and E. J. Vigmond, Purkinje-mdeiated effects in the response of quiescent ventricles to defibrillation shocks,, Annals of Biomedical Engineering, (2009).   Google Scholar

[7]

P. G. Ciarlet, "The Finite Element Method for Elliptic Problems,", North-Holland, (1978).   Google Scholar

[8]

D. DiFrancesco and D. Noble, A model of cardiac electrical activity incorporating ionic pumps and concentration changes,, Phil. Trans. R. Soc. Lond., 307 (1985), 353.  doi: 10.1098/rstb.1985.0001.  Google Scholar

[9]

Philip E. Gill, Walter Murray and Margaret H. Wright, "Practical Optimization,", Academic Press Inc., (1981).   Google Scholar

[10]

C. S. Henriquez, A. L. Muzikant and C.K. Smoak, Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: Simulations in a three-dimensional bidomain model,, Journal of Cardiovascular Electrophysiology, 7 (1996), 424.   Google Scholar

[11]

B. Milan Horacek, K. Simelius, R. Hren and J. Nenonen, Challenges in modelling human heart's total excitation,, in, (2001), 39.   Google Scholar

[12]

J. Keener and J. Sneyd, "Mathematical Physiology,", Springer, (1998).   Google Scholar

[13]

M. Potse, B. Dube, J. Richer, A. Vinet and R. M. Gulrajani, A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart,, IEEE Transactions on Biomedical Engineering, (2006).   Google Scholar

[14]

J. C. Neu and W. Krassowska, Homogenization of syncytial tissues,, Crit. Rev. Biomed. Eng., 21 (1993), 137.   Google Scholar

[15]

A. E. Pollard and R. C. Barr, The construction of an anatomically based model of the human ventricular conduction system,, IEEE Transaction on Biomedical Engineering, 37 (1990), 1173.  doi: 10.1109/10.64460.  Google Scholar

[16]

W. B. Ross, S. M. Mohiuddin, T. Pagano and D. Hughes, Malposition of a transvenous cardiac electrode associated with amaurosis fugax,, Pacing and Clinical Electrophysiology, 6 (1983), 119.  doi: 10.1111/j.1540-8159.1983.tb06589.x.  Google Scholar

[17]

W. A. Schiavone, L. O. N. W. Castle, E. Salcedo and R. Graor, Amaurosis fugax in a patient with a left ventricular endocardial pacemaker,, Pacing and Clinical Electrophysiology, 7 (1984), 288.  doi: 10.1111/j.1540-8159.1984.tb04901.x.  Google Scholar

[18]

K. H. W. J. Ten Tusscher and A. V. Panfilov, Modelling of the ventricular conduction system,, Progress in Biophysics and Molecular Biology, (2008).   Google Scholar

[19]

E. J. Vigmond and C. Clements, Construction of a computer model to investigate sawtooth efects in the purkinje system,, IEEE Transaction on Biomedical Engineering, 54 (2007).  doi: 10.1109/TBME.2006.888817.  Google Scholar

show all references

References:
[1]

A. V. Aslanidi, P. Stewart, M. R. Boyett and H. Zhang, Optimal velocity and safety of discontinuous conduction through the heterogeneous purkinje-ventricular junction,, Biophysical Journal, (2009).   Google Scholar

[2]

G. Beeler and H. Reuter., Reconstruction of the action potential of ventricular myocardial fibres,, J. Physiol. (Lond.), 268 (1977), 177.   Google Scholar

[3]

O. Berenfeld and J. Jalife, Purkinje-muscle rentry as a mechanism of polymorphic ventricular arrhytmias in a 3-dimensional model of the ventricles,, Circ. Res., 82 (1998), 1063.   Google Scholar

[4]

M. Boulakia, S. Cazeau, M. A. Fernández, J. F. Gerbeau and N. Zemzemi, Mathematical modeling of electrocardiograms: A numerical study,, Annals of Biomedical Engineering, 38 (2010), 1071.   Google Scholar

[5]

M. Boulakia, M. A. Fernández, J.-F. Gerbeau and N. Zemzemi, Towards the numerical simulation of electrocardiograms,, in, (2007), 240.   Google Scholar

[6]

P. M. Boyle, M. Deo, G. Plank and E. J. Vigmond, Purkinje-mdeiated effects in the response of quiescent ventricles to defibrillation shocks,, Annals of Biomedical Engineering, (2009).   Google Scholar

[7]

P. G. Ciarlet, "The Finite Element Method for Elliptic Problems,", North-Holland, (1978).   Google Scholar

[8]

D. DiFrancesco and D. Noble, A model of cardiac electrical activity incorporating ionic pumps and concentration changes,, Phil. Trans. R. Soc. Lond., 307 (1985), 353.  doi: 10.1098/rstb.1985.0001.  Google Scholar

[9]

Philip E. Gill, Walter Murray and Margaret H. Wright, "Practical Optimization,", Academic Press Inc., (1981).   Google Scholar

[10]

C. S. Henriquez, A. L. Muzikant and C.K. Smoak, Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: Simulations in a three-dimensional bidomain model,, Journal of Cardiovascular Electrophysiology, 7 (1996), 424.   Google Scholar

[11]

B. Milan Horacek, K. Simelius, R. Hren and J. Nenonen, Challenges in modelling human heart's total excitation,, in, (2001), 39.   Google Scholar

[12]

J. Keener and J. Sneyd, "Mathematical Physiology,", Springer, (1998).   Google Scholar

[13]

M. Potse, B. Dube, J. Richer, A. Vinet and R. M. Gulrajani, A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart,, IEEE Transactions on Biomedical Engineering, (2006).   Google Scholar

[14]

J. C. Neu and W. Krassowska, Homogenization of syncytial tissues,, Crit. Rev. Biomed. Eng., 21 (1993), 137.   Google Scholar

[15]

A. E. Pollard and R. C. Barr, The construction of an anatomically based model of the human ventricular conduction system,, IEEE Transaction on Biomedical Engineering, 37 (1990), 1173.  doi: 10.1109/10.64460.  Google Scholar

[16]

W. B. Ross, S. M. Mohiuddin, T. Pagano and D. Hughes, Malposition of a transvenous cardiac electrode associated with amaurosis fugax,, Pacing and Clinical Electrophysiology, 6 (1983), 119.  doi: 10.1111/j.1540-8159.1983.tb06589.x.  Google Scholar

[17]

W. A. Schiavone, L. O. N. W. Castle, E. Salcedo and R. Graor, Amaurosis fugax in a patient with a left ventricular endocardial pacemaker,, Pacing and Clinical Electrophysiology, 7 (1984), 288.  doi: 10.1111/j.1540-8159.1984.tb04901.x.  Google Scholar

[18]

K. H. W. J. Ten Tusscher and A. V. Panfilov, Modelling of the ventricular conduction system,, Progress in Biophysics and Molecular Biology, (2008).   Google Scholar

[19]

E. J. Vigmond and C. Clements, Construction of a computer model to investigate sawtooth efects in the purkinje system,, IEEE Transaction on Biomedical Engineering, 54 (2007).  doi: 10.1109/TBME.2006.888817.  Google Scholar

[1]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[2]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[3]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[4]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[5]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[6]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[7]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[8]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[9]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[10]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[11]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[12]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[13]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[14]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[15]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[16]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[17]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[18]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[19]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[20]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (15)

[Back to Top]