2011, 8(4): 973-986. doi: 10.3934/mbe.2011.8.973

A mathematical model for cellular immunology of tuberculosis

1. 

Departamento de Matemáticas y Estadística,, Universidad de Nariño, Pasto, Clle 18 - Cra 50, Colombia, Posgrado en Ciencias Matemáticas, UNAM, 04510 DF, Mexico

2. 

Departamento de Matemáticas, Facultad de Ciencias,, Universidad Nacional Autónoma de M ́exico, 04510, DF, Mexico

3. 

Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias ”Ismael Cosio Villegas”, Calzada Tlalpan 4502, Colonia sección XVI, 14080 DF, Mexico

Received  February 2010 Revised  February 2011 Published  August 2011

Tuberculosis (TB) is a global emergency. The World Health Organization reports about 9.2 million new infections each year, with an average of 1.7 million people killed by the disease. The causative agent is Mycobacterium tuberculosis (Mtb), whose main target are the macrophages, important immune system cells. Macrophages and T cell populations are the main responsible for fighting the pathogen. A better understanding of the interaction between Mtb, macrophages and T cells will contribute to the design of strategies to control TB. The purpose of this study is to evaluate the impact of the response of T cells and macrophages in the control of Mtb. To this end, we propose a system of ordinary differential equations to model the interaction among non-infected macrophages, infected macrophages, T cells and Mtb bacilli. Model analysis reveals the existence of two equilibrium states, infection-free equilibrium and the endemically infected equilibrium which can represent a state of latent or active infection, depending on the amount of bacteria.
Citation: Eduardo Ibarguen-Mondragon, Lourdes Esteva, Leslie Chávez-Galán. A mathematical model for cellular immunology of tuberculosis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 973-986. doi: 10.3934/mbe.2011.8.973
References:
[1]

J. Alavez, J. Avendano, L. Esteva, J. Florez, J. Fuentes, G. García, G. Gómez and J. López, Within-host population dynamics of antibiotic-resistant M. tuberculosis,, Mathematical Medicine and Biology, 24 (2007), 35.   Google Scholar

[2]

M. Anis, S. Fulton, S. Reba, Y. Liu, C. Harding and W. Bomm, Modulation of pulmonary dendritic cell function during mycobacterial infection,, Infect. Immun, 76 (2008), 671.   Google Scholar

[3]

Centers for Disease Control and Precention, "TB Elimination. The Difference Between Latent TB Infection and Active TB Disease,", March 2010. Available from: \url{http://www.cdc.gov/tb/publications/factsheets/general/LTBIandActiveTB.pdf}., (2010).   Google Scholar

[4]

J. Chan and J. Flynn, The immunological aspects of latency in tuberculosis,, Clin. Immunol, 110 (2004), 2.   Google Scholar

[5]

J. Davis and L. Ramakrishnan, The role of the granuloma in expansion and dissemination of early tuberculous infection,, Cell, 136 (2009), 37.   Google Scholar

[6]

J. Egen, A. Rothfuchs, C. Feng, N. Winter, A. Sher and R. Germain, Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas,, Immunity, 28 (2008), 271.   Google Scholar

[7]

A. Gallegos, E. Pamer and M. Glickman, Delayed protection by ESAT-6-specific effector CD4$^+$ T cells after airborne M. tuberculosis infection,, J. Exp. Med, 205 (2008), 2359.   Google Scholar

[8]

J. Hale, "Ordinary Differential Equations,", first edition, (1969).   Google Scholar

[9]

D. Kirschner, D. Sud, C. Bigbee and J. L. Flynn, Contribution of CD8$^+$T cells to control of mycobacterium tuberculosis infection,, The Journal of Immunology, 176 (2006), 4296.   Google Scholar

[10]

G. Magombedze, W. Garira and E. Mwenje, Modelling the human immune response mechanisms to Mycobacterium tuberculosis infection in the lungs,, J. MBE, 3 (2006), 661.   Google Scholar

[11]

S. Marino and D. Kirschner, The human immune response to the Mycobacterium tuberculosis in lung and lymph node,, Journal of Theoretical Biology, 227 (2004), 463.   Google Scholar

[12]

J. Davis and L. Ramakrishnan, The role of the granuloma in expansion and dissemination of early tuberculous infection,, Cell, 136 (2007), 37.   Google Scholar

[13]

J. Palomino, S. Cardoso and V. Ritacco, "Tuberculosis 2007, From Basic Science to Patient Care,", first edition, (2007).   Google Scholar

[14]

M. Sköld and S. M. Behar, Tuberculosis triggers a tissue-dependent program of differentiation and acquisition of effector functions by circulating monocytes,, J. Immunology, 81 (2008), 6349.   Google Scholar

[15]

I. Sugawara, S. Mizuno, T. Tatsumi and T. Taniyama, Imaging of pulmonary granulomas using a photon imager,, Jpn. J. Infect Dis., 59 (2006), 332.   Google Scholar

[16]

M. Tsai, S. Chakravarty, G. Zhu, J. Xu, K. Tanaka, C. Koch, J. Tufariello, J. Flynn and J. Chan, Characterization of the tuberculous granuloma in murine and human lungs: Cellular composition and relative tissue oxygen tension,, Cell Microbiology, 8 (2006), 218.   Google Scholar

[17]

T. Ulrischs and S. Kaufmann, Cell mediated immune response in Tuberculosis,, first edition, (2004).   Google Scholar

[18]

WHO Report, "Global Tuberculosis Control - Surveillance, Planning, Financing," 2008., Available from: \url{http://www.who.int/tb/publications/global_report/2008/pdf/fullreport.pdf}., (2008).   Google Scholar

[19]

J. Wigginton and D. Kischner, A model to predict cell mediated imune regulatory mechanisms during human infection with Mycobacterium tuberculosis,, J. Immunology, 166 (2001), 1951.   Google Scholar

[20]

A. J. Wolf, B. Linas, G. J. Trevejo-Nuñez, E. Kincaid, T. Tamura, K. Takatsu and J. D. Ernst, Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo,, J. Immunology, 179 (2007), 2509.   Google Scholar

show all references

References:
[1]

J. Alavez, J. Avendano, L. Esteva, J. Florez, J. Fuentes, G. García, G. Gómez and J. López, Within-host population dynamics of antibiotic-resistant M. tuberculosis,, Mathematical Medicine and Biology, 24 (2007), 35.   Google Scholar

[2]

M. Anis, S. Fulton, S. Reba, Y. Liu, C. Harding and W. Bomm, Modulation of pulmonary dendritic cell function during mycobacterial infection,, Infect. Immun, 76 (2008), 671.   Google Scholar

[3]

Centers for Disease Control and Precention, "TB Elimination. The Difference Between Latent TB Infection and Active TB Disease,", March 2010. Available from: \url{http://www.cdc.gov/tb/publications/factsheets/general/LTBIandActiveTB.pdf}., (2010).   Google Scholar

[4]

J. Chan and J. Flynn, The immunological aspects of latency in tuberculosis,, Clin. Immunol, 110 (2004), 2.   Google Scholar

[5]

J. Davis and L. Ramakrishnan, The role of the granuloma in expansion and dissemination of early tuberculous infection,, Cell, 136 (2009), 37.   Google Scholar

[6]

J. Egen, A. Rothfuchs, C. Feng, N. Winter, A. Sher and R. Germain, Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas,, Immunity, 28 (2008), 271.   Google Scholar

[7]

A. Gallegos, E. Pamer and M. Glickman, Delayed protection by ESAT-6-specific effector CD4$^+$ T cells after airborne M. tuberculosis infection,, J. Exp. Med, 205 (2008), 2359.   Google Scholar

[8]

J. Hale, "Ordinary Differential Equations,", first edition, (1969).   Google Scholar

[9]

D. Kirschner, D. Sud, C. Bigbee and J. L. Flynn, Contribution of CD8$^+$T cells to control of mycobacterium tuberculosis infection,, The Journal of Immunology, 176 (2006), 4296.   Google Scholar

[10]

G. Magombedze, W. Garira and E. Mwenje, Modelling the human immune response mechanisms to Mycobacterium tuberculosis infection in the lungs,, J. MBE, 3 (2006), 661.   Google Scholar

[11]

S. Marino and D. Kirschner, The human immune response to the Mycobacterium tuberculosis in lung and lymph node,, Journal of Theoretical Biology, 227 (2004), 463.   Google Scholar

[12]

J. Davis and L. Ramakrishnan, The role of the granuloma in expansion and dissemination of early tuberculous infection,, Cell, 136 (2007), 37.   Google Scholar

[13]

J. Palomino, S. Cardoso and V. Ritacco, "Tuberculosis 2007, From Basic Science to Patient Care,", first edition, (2007).   Google Scholar

[14]

M. Sköld and S. M. Behar, Tuberculosis triggers a tissue-dependent program of differentiation and acquisition of effector functions by circulating monocytes,, J. Immunology, 81 (2008), 6349.   Google Scholar

[15]

I. Sugawara, S. Mizuno, T. Tatsumi and T. Taniyama, Imaging of pulmonary granulomas using a photon imager,, Jpn. J. Infect Dis., 59 (2006), 332.   Google Scholar

[16]

M. Tsai, S. Chakravarty, G. Zhu, J. Xu, K. Tanaka, C. Koch, J. Tufariello, J. Flynn and J. Chan, Characterization of the tuberculous granuloma in murine and human lungs: Cellular composition and relative tissue oxygen tension,, Cell Microbiology, 8 (2006), 218.   Google Scholar

[17]

T. Ulrischs and S. Kaufmann, Cell mediated immune response in Tuberculosis,, first edition, (2004).   Google Scholar

[18]

WHO Report, "Global Tuberculosis Control - Surveillance, Planning, Financing," 2008., Available from: \url{http://www.who.int/tb/publications/global_report/2008/pdf/fullreport.pdf}., (2008).   Google Scholar

[19]

J. Wigginton and D. Kischner, A model to predict cell mediated imune regulatory mechanisms during human infection with Mycobacterium tuberculosis,, J. Immunology, 166 (2001), 1951.   Google Scholar

[20]

A. J. Wolf, B. Linas, G. J. Trevejo-Nuñez, E. Kincaid, T. Tamura, K. Takatsu and J. D. Ernst, Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo,, J. Immunology, 179 (2007), 2509.   Google Scholar

[1]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[2]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[3]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[4]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[5]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[8]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[9]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[10]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[13]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[14]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[15]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[16]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[17]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[18]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[19]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[20]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (3)

[Back to Top]