2011, 8(4): 987-997. doi: 10.3934/mbe.2011.8.987

Morphogenesis and aggressiveness of cervix carcinoma

1. 

Department of Physical-Chemistry, Faculty of Chemistry, University of Havana, Havana, Cuba

2. 

Institute of Oncology and Radiobiology, Havana, Cuba

3. 

Faculty of Physics, University of Havana, Havana, Cuba

Received  March 2010 Revised  February 2011 Published  August 2011

A mathematical model was obtained to describe the relation between the tissue morphology of cervix carcinoma and both dynamic processes of mitosis and apoptosis, and an expression to quantify the tumor aggressiveness, which in this context is associated with the tumor growth rate. The proposed model was applied to Stage III cervix carcinoma in vivo studies. In this study we found that the apoptosis rate was signicantly smaller in the tumor tissues and both the mitosis rate and aggressiveness index decrease with Stage III patients’ age. These quantitative results correspond to observed behavior in clinical and genetics studies.
Citation: Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, José Manuel Nieto-Villar. Morphogenesis and aggressiveness of cervix carcinoma. Mathematical Biosciences & Engineering, 2011, 8 (4) : 987-997. doi: 10.3934/mbe.2011.8.987
References:
[1]

S. A. Frank, "Dynamics of Cancer,", H. Allen Orr, (2007).   Google Scholar

[2]

J. W. Baish and R. K. Jain, Fractals and cancer,, Cancer Res., 60 (2000), 3683.   Google Scholar

[3]

G. Landini, "Complexity in Tumour Growth Patterns,", Fractals in Biology and Medicine, (1998).   Google Scholar

[4]

Robbins and Cotran, eds., "Pathologic Basis of Disease,", Elsevier, (2005).   Google Scholar

[5]

L. Norton, Conceptual and practical implications of breast tissue geometry: Toward a more effective, less toxic therapy,, Oncologist, 10 (2005), 370.   Google Scholar

[6]

E. Sabo, A. Boltenko, Y. Sova, A. Stein, S. Kleinhaus and M. B. Resnick, Microscopic analysis and significance of vascular architectural complexity in renal cell carcinoma,, Clinical Cancer Research, 7 (2001), 533.   Google Scholar

[7]

R. Sedivy, Ch. Windischberger, K. Svozil, E. Moser and G. Breitenecker, Fractal analysis: An objective method for identifying atypical nuclei in dysplastic lesions of the cervix uteri,, Gynecologic Oncology, 75 (1999), 78.  doi: 10.1006/gyno.1999.5516.  Google Scholar

[8]

E. M. Toledo Cuevas and A. García Carrancá, P53 and human papillomavirus in the carcinogenesis of the uterine cervix,, Rev. Invest. Clín, 48 (1996), 59.   Google Scholar

[9]

T. Prempree, V. Patanaphan, W. Sewchand and R. M. Scott, The influence of patients' age and tumor grade on the prognosis of carcinoma of the cervix,, Cancer, 51 (1983), 764.   Google Scholar

[10]

E. Izquierdo-Kulich, M. Amigó de Quesada, C. M. Pérez-Amor, M. Lopes Texeira and J. M. Nieto-Villar, The dynamics of tumor growth and cells pattern morphology,, Mathematical Biosciences and Engineering, 6 (2009), 547.   Google Scholar

[11]

N. G. van Kampen, "Stochastic Processes in Physics and Chemistry,", N. H. Publications, (1992).   Google Scholar

[12]

C. W. Gardiner, "Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences," Third edition, Springer Series in Synergetics, 13,, Springer-Verlag, (2004).   Google Scholar

[13]

R. W. Tsang, A. W. Fyles, Y. Li, M. M. Rajaraman, W. Chapman, M. Pintilie and C. S. Wong, Tumor proliferation and apoptosis in human uterine cervix carcinoma I: Correlations between tumor proliferation and apoptosis,, Radiother Oncol, 50 (1999), 85.  doi: 10.1016/S0167-8140(98)00120-0.  Google Scholar

show all references

References:
[1]

S. A. Frank, "Dynamics of Cancer,", H. Allen Orr, (2007).   Google Scholar

[2]

J. W. Baish and R. K. Jain, Fractals and cancer,, Cancer Res., 60 (2000), 3683.   Google Scholar

[3]

G. Landini, "Complexity in Tumour Growth Patterns,", Fractals in Biology and Medicine, (1998).   Google Scholar

[4]

Robbins and Cotran, eds., "Pathologic Basis of Disease,", Elsevier, (2005).   Google Scholar

[5]

L. Norton, Conceptual and practical implications of breast tissue geometry: Toward a more effective, less toxic therapy,, Oncologist, 10 (2005), 370.   Google Scholar

[6]

E. Sabo, A. Boltenko, Y. Sova, A. Stein, S. Kleinhaus and M. B. Resnick, Microscopic analysis and significance of vascular architectural complexity in renal cell carcinoma,, Clinical Cancer Research, 7 (2001), 533.   Google Scholar

[7]

R. Sedivy, Ch. Windischberger, K. Svozil, E. Moser and G. Breitenecker, Fractal analysis: An objective method for identifying atypical nuclei in dysplastic lesions of the cervix uteri,, Gynecologic Oncology, 75 (1999), 78.  doi: 10.1006/gyno.1999.5516.  Google Scholar

[8]

E. M. Toledo Cuevas and A. García Carrancá, P53 and human papillomavirus in the carcinogenesis of the uterine cervix,, Rev. Invest. Clín, 48 (1996), 59.   Google Scholar

[9]

T. Prempree, V. Patanaphan, W. Sewchand and R. M. Scott, The influence of patients' age and tumor grade on the prognosis of carcinoma of the cervix,, Cancer, 51 (1983), 764.   Google Scholar

[10]

E. Izquierdo-Kulich, M. Amigó de Quesada, C. M. Pérez-Amor, M. Lopes Texeira and J. M. Nieto-Villar, The dynamics of tumor growth and cells pattern morphology,, Mathematical Biosciences and Engineering, 6 (2009), 547.   Google Scholar

[11]

N. G. van Kampen, "Stochastic Processes in Physics and Chemistry,", N. H. Publications, (1992).   Google Scholar

[12]

C. W. Gardiner, "Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences," Third edition, Springer Series in Synergetics, 13,, Springer-Verlag, (2004).   Google Scholar

[13]

R. W. Tsang, A. W. Fyles, Y. Li, M. M. Rajaraman, W. Chapman, M. Pintilie and C. S. Wong, Tumor proliferation and apoptosis in human uterine cervix carcinoma I: Correlations between tumor proliferation and apoptosis,, Radiother Oncol, 50 (1999), 85.  doi: 10.1016/S0167-8140(98)00120-0.  Google Scholar

[1]

Elena Izquierdo-Kulich, José Manuel Nieto-Villar. Mesoscopic model for tumor growth. Mathematical Biosciences & Engineering, 2007, 4 (4) : 687-698. doi: 10.3934/mbe.2007.4.687

[2]

Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar. The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 547-559. doi: 10.3934/mbe.2009.6.547

[3]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[4]

Guanqi Liu, Yuwen Wang. Pattern formation of a coupled two-cell Schnakenberg model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1051-1062. doi: 10.3934/dcdss.2017056

[5]

Gülnihal Meral, Christian Stinner, Christina Surulescu. On a multiscale model involving cell contractivity and its effects on tumor invasion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 189-213. doi: 10.3934/dcdsb.2015.20.189

[6]

Michael Grinfeld, Harbir Lamba, Rod Cross. A mesoscopic stock market model with hysteretic agents. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 403-415. doi: 10.3934/dcdsb.2013.18.403

[7]

Yangjin Kim, Hans G. Othmer. Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1141-1156. doi: 10.3934/mbe.2015.12.1141

[8]

T.L. Jackson. A mathematical model of prostate tumor growth and androgen-independent relapse. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 187-201. doi: 10.3934/dcdsb.2004.4.187

[9]

J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263-278. doi: 10.3934/mbe.2013.10.263

[10]

Hyun Geun Lee, Yangjin Kim, Junseok Kim. Mathematical model and its fast numerical method for the tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1173-1187. doi: 10.3934/mbe.2015.12.1173

[11]

Mohammad A. Tabatabai, Wayne M. Eby, Karan P. Singh, Sejong Bae. T model of growth and its application in systems of tumor-immune dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 925-938. doi: 10.3934/mbe.2013.10.925

[12]

Marcelo E. de Oliveira, Luiz M. G. Neto. Directional entropy based model for diffusivity-driven tumor growth. Mathematical Biosciences & Engineering, 2016, 13 (2) : 333-341. doi: 10.3934/mbe.2015005

[13]

Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 203-209. doi: 10.3934/dcdss.2020011

[14]

Pierre Degond, Sophie Hecht, Nicolas Vauchelet. Incompressible limit of a continuum model of tissue growth for two cell populations. Networks & Heterogeneous Media, 2020, 15 (1) : 57-85. doi: 10.3934/nhm.2020003

[15]

Shaoyong Lai, Yulan Zhou. A stochastic optimal growth model with a depreciation factor. Journal of Industrial & Management Optimization, 2010, 6 (2) : 283-297. doi: 10.3934/jimo.2010.6.283

[16]

Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1

[17]

Cristina Anton, Alan Yong. Stochastic dynamics and survival analysis of a cell population model with random perturbations. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1077-1098. doi: 10.3934/mbe.2018048

[18]

Ahuod Alsheri, Ebraheem O. Alzahrani, Asim Asiri, Mohamed M. El-Dessoky, Yang Kuang. Tumor growth dynamics with nutrient limitation and cell proliferation time delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3771-3782. doi: 10.3934/dcdsb.2017189

[19]

Amy H. Lin. A model of tumor and lymphocyte interactions. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 241-266. doi: 10.3934/dcdsb.2004.4.241

[20]

Ali Ashher Zaidi, Bruce Van Brunt, Graeme Charles Wake. A model for asymmetrical cell division. Mathematical Biosciences & Engineering, 2015, 12 (3) : 491-501. doi: 10.3934/mbe.2015.12.491

[Back to Top]