2012, 9(1): 123-145. doi: 10.3934/mbe.2012.9.123

A statistical approach to the use of control entropy identifies differences in constraints of gait in highly trained versus untrained runners

1. 

Department of Mathematics & Computer Science, Clarkson University, Potsdam, NY 13676, United States, United States, United States

2. 

Applied Physiology Laboratory, Eastern Michigan University, Ypsilanti, MI 48197, United States, United States

Received  February 2011 Revised  July 2011 Published  December 2011

Control entropy (CE) is a complexity analysis suitable for dynamic, non-stationary conditions which allows the inference of the control effort of a dynamical system generating the signal [4]. These characteristics make CE a highly relevant time varying quantity relevant to the dynamic physiological responses associated with running. Using High Resolution Accelerometry (HRA) signals we evaluate here constraints of running gait, from two different groups of runners, highly trained collegiate and untrained runners. To this end, we further develop the control entropy (CE) statistic to allow for group analysis to examine the non-linear characteristics of movement patterns in highly trained runners with those of untrained runners, to gain insight regarding gaits that are optimal for running. Specifically, CE develops response time series of individuals descriptive of the control effort; a group analysis of these shapes developed here uses Karhunen Loeve Analysis (KL) modes of these time series which are compared between groups by application of a Hotelling $T^{2}$ test to these group response shapes. We find that differences in the shape of the CE response exist within groups, between axes for untrained runners (vertical vs anterior-posterior and mediolateral vs anterior-posterior) and trained runners (mediolateral vs anterior-posterior). Also shape differences exist between groups by axes (vertical vs mediolateral). Further, the CE, as a whole, was higher in each axis in trained vs untrained runners. These results indicate that the approach can provide unique insight regarding the differing constraints on running gait in highly trained and untrained runners when running under dynamic conditions. Further, the final point indicates trained runners are less constrained than untrained runners across all running speeds.
Citation: Rana D. Parshad, Stephen J. McGregor, Michael A. Busa, Joseph D. Skufca, Erik Bollt. A statistical approach to the use of control entropy identifies differences in constraints of gait in highly trained versus untrained runners. Mathematical Biosciences & Engineering, 2012, 9 (1) : 123-145. doi: 10.3934/mbe.2012.9.123
References:
[1]

W. Aziz and M. Arif, Complexity analysis of stride interval time series by threshold dependent symbolic entropy,, Eur. J. Appl. Physiol., 98 (2006), 30.  doi: 10.1007/s00421-006-0226-5.  Google Scholar

[2]

O. Beauchet, V. Dubost, F. R. Herrmann and R. W. Kressig, Stride-to-stride variability while backward counting among healthy young adults,, J. Neuroeng. Rehabil., 2 (2005).  doi: 10.1186/1743-0003-2-26.  Google Scholar

[3]

B. R. Bloem, V. V. Valkenburg, M. Slabbekoorn and M. D. Willemsen, The multiple tasks test: Development and normal strategies,, Gait Posture, 14 (2001), 191.   Google Scholar

[4]

E. M. Bollt, J. D. Skufca and S. J. McGregor, Control entropy: A complexity measure for nonstationary signals,, Mathematical Biosciences and Engineering, 6 (2009), 1.  doi: 10.3934/mbe.2009.6.1.  Google Scholar

[5]

U. H. Buzzi and B. D. Ulrich, Dynamic stability of gait cycles as a function of speed and system constraints,, Motor Control, 8 (2004), 241.   Google Scholar

[6]

P. Cavanagh, The mechanics of distance running: A historical perspective,, in, (1990).   Google Scholar

[7]

T. M. Cover and J. A. Thomas, "Elements of Information Theory,", Wiley Series in Telecommunications, (1991).  doi: 10.1002/0471200611.  Google Scholar

[8]

K. Davids, S. Bennett and K. M. Newell, "Movement System Variability,", Human Kinetics, (2006).   Google Scholar

[9]

D. P. Ferris, G. S. Sawicki and M. A. Daley, A physiologist's perspective on robotic exoskeletons for human locomotion,, Int. J. HR, 4 (2007), 507.  doi: 10.1142/S0219843607001138.  Google Scholar

[10]

A. D. Georgoulis, C. Moraiti, S. Ristanis and N. Stergiou, A novel approach to measure variability in the anterior cruciate ligament deficient knee during walking: The use of the approximate entropy in orthopaedics,, J. Clin. Monit. Comput., 20 (2006), 11.  doi: 10.1007/s10877-006-1032-7.  Google Scholar

[11]

P. S. Glazier and K. Davids, Constraints on the complete optimization of human motion,, Sports Med., 39 (2009), 15.  doi: 10.2165/00007256-200939010-00002.  Google Scholar

[12]

G. H. Golub and C. F. Van Loan, "Matrix Computations,", The Johns Hopkins University Press, (1996).   Google Scholar

[13]

P. Grassberger and I. Procaccia, Estimation of the Kolmogorov entropy from a chaotic signal,, Physical Review A, 28 (1983), 2591.  doi: 10.1103/PhysRevA.28.2591.  Google Scholar

[14]

J. M. Hausdorff, Gait dynamics, fractals and falls: Finding meaning in the stride-to-stride fluctuations of human walking,, Hum. Mov. Sci., 26 (2007), 555.   Google Scholar

[15]

H. Kantz and T. Schreiber, "Nonlinear Time Series Analysis," Second edition,, Cambridge University Press, (2004).   Google Scholar

[16]

C. K. Karmakar, A. H. Khandoker, R. K. Begg, M. Palaniswami and S. Taylor, Understanding ageing effects by approximate entropy analysis of gait variability,, Conf. Proc. IEEE Eng. Med. Biol. Soc., (2007), 1965.  doi: 10.1109/IEMBS.2007.4352703.  Google Scholar

[17]

A. H. Khandoker, M. Palaniswami and R. K. Begg, A comparative study on approximate entropy measure and poincaire plot indexes of minimum foot clearance variability in the elderly during walking,, J. Neuroeng. Rehabil., 5 (2008).  doi: 10.1186/1743-0003-5-4.  Google Scholar

[18]

M. J. Kurz and N. Stergiou, The aging human neuromuscular system expresses less certainty for selecting joint kinematics during gait,, Neurosci. Lett., 348 (2003), 155.  doi: 10.1016/S0304-3940(03)00736-5.  Google Scholar

[19]

F. Liao, J. Wang and P. He, Multi-resolution entropy analysis of gait symmetry in neurological degenerative diseases and amyotrophic lateral sclerosis,, Med. Eng. Phys., 30 (2008), 299.  doi: 10.1016/j.medengphy.2007.04.014.  Google Scholar

[20]

K. V. Mardia, J. T. Kent and J. M. Bibby, "Multivariate Analysis,", Probability and Mathematical Statistics: A Series of Monographs and Textbooks, (1979).   Google Scholar

[21]

S. J. McGregor, M. A. Busa, J. D. Skufca, J. A. Yaggie and E. M. Bollt, Control entropy identifies differential changes in complexity of walking and running gait patterns with increasing speed in highly trained runners,, Chaos, 19 (2009).   Google Scholar

[22]

S. J. McGregor, M. A. Busa, J. A. Yaggie and E. M. Bollt, High resolution MEMS accelerometers to estimate VO2 and compare running mechanics between highly trained inter-collegiate and untrained runners,, PLoS One, 4 (2009).  doi: 10.1371/journal.pone.0007355.  Google Scholar

[23]

S. P. Messier, C. Legault, C. R. Schoenlank, J. J. Newman, D. F. Martin and P. Devita, Risk factors and mechanisms of knee injury in runners,, Med. Sci. Sports Exerc., 40 (2008), 1873.  doi: 10.1249/MSS.0b013e31817ed272.  Google Scholar

[24]

D. J. Miller, N. Stergiou and M. J. Kurz, An improved surrogate method for detecting the presence of chaos in gait,, J. Biomech., 39 (2006), 2873.  doi: 10.1016/j.jbiomech.2005.10.019.  Google Scholar

[25]

R. Moe-Nilssen, A new method for evaluating motor control in gait under real-life environmental conditions. Part 2: Gait analysis,, Clin. Biomech. (Bristol, 13 (1998), 328.  doi: 10.1016/S0268-0033(98)00090-4.  Google Scholar

[26]

K. M. Newell, Constraints on the development of coordination,, in, (1986), 341.   Google Scholar

[27]

K. M. Newell and D. E. Vaillancourt, Dimensional change in motor learning,, Hum. Mov. Sci., 20 (2001), 695.  doi: 10.1016/S0167-9457(01)00073-2.  Google Scholar

[28]

S. M. Pincus, Approximate entropy as a measure of system complexity,, Proceedings of the National Academy of Sciences of the United States of America, 88 (1991), 2297.   Google Scholar

[29]

S. M. Pincus, Assessing serial irregularity and its implications for health,, Annals of the New York Academy of Sciences, 954 (2001).  doi: 10.1111/j.1749-6632.2001.tb02755.x.  Google Scholar

[30]

A. Renyi, On measures of entropy and information,, Proceedings of the 4th Berkeley Sympo- sium on Mathematical Statistics and Probability, 1 (1961), 547.   Google Scholar

[31]

J. S. Richman and J. R. Moorman, Physiological time-series analysis using approximate en- tropy and sample entropy,, American Journal of Physiology- Heart and Circulatory Physiology, 278 (2000), 2039.   Google Scholar

[32]

C. Robinson, "Infinite Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDE and the Theory of Global Attractors,", 2nd edition, (2001).   Google Scholar

[33]

L. A. Schrodt, V. S. Mercer, C. A. Giuliani and M. Hartman, Characteristics of stepping over an obstacle in community dwelling older adults under dual-task conditions,, Gait Posture, 19 (2004), 279.  doi: 10.1016/S0966-6362(03)00067-5.  Google Scholar

[34]

C. E. Shannon and W. Weaver, "The Mathematical Theory of Information,", Uni- versity of Illinois Press, 97 (1949).   Google Scholar

[35]

J. S. Slawinski and V. L. Billat, Difference in mechanical and energy cost between highly, well, and nontrained runners,, Med. Sci. Sports Exerc., 36 (2004), 1440.  doi: 10.1249/01.MSS.0000135785.68760.96.  Google Scholar

[36]

G. Yogev-Seligmann, J. M. Hausdorff and N. Giladi, The role of executive function and attention in gait,, Mov. Disord., 23 (2008), 329.  doi: 10.1002/mds.21720.  Google Scholar

[37]

M. Joyner and E. Coyle, Endurance exercise performance: The physiology of champions,, The Journal of Physiology, 586 (2008), 35.   Google Scholar

[38]

J. Lin, E. Keogh, S. Lonardi and B. Chiu, A symbolic representation of time series, with implications for streaming algorithms,, Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, (2003), 2.   Google Scholar

[39]

Y. Nakayama, K. Kudo and T. Ohtsuki, Variability and fluctuation in running gait cycle of trained runners and non-runners,, Gait Posture, 31 (2009), 331.  doi: 10.1016/j.gaitpost.2009.12.003.  Google Scholar

[40]

K. Jordan and K. M. Newell, The structure of variability in human walking and running is speed-dependent,, Exerc. Sport Sci. Rev., 36 (2008), 200.  doi: 10.1097/JES.0b013e3181877d71.  Google Scholar

show all references

References:
[1]

W. Aziz and M. Arif, Complexity analysis of stride interval time series by threshold dependent symbolic entropy,, Eur. J. Appl. Physiol., 98 (2006), 30.  doi: 10.1007/s00421-006-0226-5.  Google Scholar

[2]

O. Beauchet, V. Dubost, F. R. Herrmann and R. W. Kressig, Stride-to-stride variability while backward counting among healthy young adults,, J. Neuroeng. Rehabil., 2 (2005).  doi: 10.1186/1743-0003-2-26.  Google Scholar

[3]

B. R. Bloem, V. V. Valkenburg, M. Slabbekoorn and M. D. Willemsen, The multiple tasks test: Development and normal strategies,, Gait Posture, 14 (2001), 191.   Google Scholar

[4]

E. M. Bollt, J. D. Skufca and S. J. McGregor, Control entropy: A complexity measure for nonstationary signals,, Mathematical Biosciences and Engineering, 6 (2009), 1.  doi: 10.3934/mbe.2009.6.1.  Google Scholar

[5]

U. H. Buzzi and B. D. Ulrich, Dynamic stability of gait cycles as a function of speed and system constraints,, Motor Control, 8 (2004), 241.   Google Scholar

[6]

P. Cavanagh, The mechanics of distance running: A historical perspective,, in, (1990).   Google Scholar

[7]

T. M. Cover and J. A. Thomas, "Elements of Information Theory,", Wiley Series in Telecommunications, (1991).  doi: 10.1002/0471200611.  Google Scholar

[8]

K. Davids, S. Bennett and K. M. Newell, "Movement System Variability,", Human Kinetics, (2006).   Google Scholar

[9]

D. P. Ferris, G. S. Sawicki and M. A. Daley, A physiologist's perspective on robotic exoskeletons for human locomotion,, Int. J. HR, 4 (2007), 507.  doi: 10.1142/S0219843607001138.  Google Scholar

[10]

A. D. Georgoulis, C. Moraiti, S. Ristanis and N. Stergiou, A novel approach to measure variability in the anterior cruciate ligament deficient knee during walking: The use of the approximate entropy in orthopaedics,, J. Clin. Monit. Comput., 20 (2006), 11.  doi: 10.1007/s10877-006-1032-7.  Google Scholar

[11]

P. S. Glazier and K. Davids, Constraints on the complete optimization of human motion,, Sports Med., 39 (2009), 15.  doi: 10.2165/00007256-200939010-00002.  Google Scholar

[12]

G. H. Golub and C. F. Van Loan, "Matrix Computations,", The Johns Hopkins University Press, (1996).   Google Scholar

[13]

P. Grassberger and I. Procaccia, Estimation of the Kolmogorov entropy from a chaotic signal,, Physical Review A, 28 (1983), 2591.  doi: 10.1103/PhysRevA.28.2591.  Google Scholar

[14]

J. M. Hausdorff, Gait dynamics, fractals and falls: Finding meaning in the stride-to-stride fluctuations of human walking,, Hum. Mov. Sci., 26 (2007), 555.   Google Scholar

[15]

H. Kantz and T. Schreiber, "Nonlinear Time Series Analysis," Second edition,, Cambridge University Press, (2004).   Google Scholar

[16]

C. K. Karmakar, A. H. Khandoker, R. K. Begg, M. Palaniswami and S. Taylor, Understanding ageing effects by approximate entropy analysis of gait variability,, Conf. Proc. IEEE Eng. Med. Biol. Soc., (2007), 1965.  doi: 10.1109/IEMBS.2007.4352703.  Google Scholar

[17]

A. H. Khandoker, M. Palaniswami and R. K. Begg, A comparative study on approximate entropy measure and poincaire plot indexes of minimum foot clearance variability in the elderly during walking,, J. Neuroeng. Rehabil., 5 (2008).  doi: 10.1186/1743-0003-5-4.  Google Scholar

[18]

M. J. Kurz and N. Stergiou, The aging human neuromuscular system expresses less certainty for selecting joint kinematics during gait,, Neurosci. Lett., 348 (2003), 155.  doi: 10.1016/S0304-3940(03)00736-5.  Google Scholar

[19]

F. Liao, J. Wang and P. He, Multi-resolution entropy analysis of gait symmetry in neurological degenerative diseases and amyotrophic lateral sclerosis,, Med. Eng. Phys., 30 (2008), 299.  doi: 10.1016/j.medengphy.2007.04.014.  Google Scholar

[20]

K. V. Mardia, J. T. Kent and J. M. Bibby, "Multivariate Analysis,", Probability and Mathematical Statistics: A Series of Monographs and Textbooks, (1979).   Google Scholar

[21]

S. J. McGregor, M. A. Busa, J. D. Skufca, J. A. Yaggie and E. M. Bollt, Control entropy identifies differential changes in complexity of walking and running gait patterns with increasing speed in highly trained runners,, Chaos, 19 (2009).   Google Scholar

[22]

S. J. McGregor, M. A. Busa, J. A. Yaggie and E. M. Bollt, High resolution MEMS accelerometers to estimate VO2 and compare running mechanics between highly trained inter-collegiate and untrained runners,, PLoS One, 4 (2009).  doi: 10.1371/journal.pone.0007355.  Google Scholar

[23]

S. P. Messier, C. Legault, C. R. Schoenlank, J. J. Newman, D. F. Martin and P. Devita, Risk factors and mechanisms of knee injury in runners,, Med. Sci. Sports Exerc., 40 (2008), 1873.  doi: 10.1249/MSS.0b013e31817ed272.  Google Scholar

[24]

D. J. Miller, N. Stergiou and M. J. Kurz, An improved surrogate method for detecting the presence of chaos in gait,, J. Biomech., 39 (2006), 2873.  doi: 10.1016/j.jbiomech.2005.10.019.  Google Scholar

[25]

R. Moe-Nilssen, A new method for evaluating motor control in gait under real-life environmental conditions. Part 2: Gait analysis,, Clin. Biomech. (Bristol, 13 (1998), 328.  doi: 10.1016/S0268-0033(98)00090-4.  Google Scholar

[26]

K. M. Newell, Constraints on the development of coordination,, in, (1986), 341.   Google Scholar

[27]

K. M. Newell and D. E. Vaillancourt, Dimensional change in motor learning,, Hum. Mov. Sci., 20 (2001), 695.  doi: 10.1016/S0167-9457(01)00073-2.  Google Scholar

[28]

S. M. Pincus, Approximate entropy as a measure of system complexity,, Proceedings of the National Academy of Sciences of the United States of America, 88 (1991), 2297.   Google Scholar

[29]

S. M. Pincus, Assessing serial irregularity and its implications for health,, Annals of the New York Academy of Sciences, 954 (2001).  doi: 10.1111/j.1749-6632.2001.tb02755.x.  Google Scholar

[30]

A. Renyi, On measures of entropy and information,, Proceedings of the 4th Berkeley Sympo- sium on Mathematical Statistics and Probability, 1 (1961), 547.   Google Scholar

[31]

J. S. Richman and J. R. Moorman, Physiological time-series analysis using approximate en- tropy and sample entropy,, American Journal of Physiology- Heart and Circulatory Physiology, 278 (2000), 2039.   Google Scholar

[32]

C. Robinson, "Infinite Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDE and the Theory of Global Attractors,", 2nd edition, (2001).   Google Scholar

[33]

L. A. Schrodt, V. S. Mercer, C. A. Giuliani and M. Hartman, Characteristics of stepping over an obstacle in community dwelling older adults under dual-task conditions,, Gait Posture, 19 (2004), 279.  doi: 10.1016/S0966-6362(03)00067-5.  Google Scholar

[34]

C. E. Shannon and W. Weaver, "The Mathematical Theory of Information,", Uni- versity of Illinois Press, 97 (1949).   Google Scholar

[35]

J. S. Slawinski and V. L. Billat, Difference in mechanical and energy cost between highly, well, and nontrained runners,, Med. Sci. Sports Exerc., 36 (2004), 1440.  doi: 10.1249/01.MSS.0000135785.68760.96.  Google Scholar

[36]

G. Yogev-Seligmann, J. M. Hausdorff and N. Giladi, The role of executive function and attention in gait,, Mov. Disord., 23 (2008), 329.  doi: 10.1002/mds.21720.  Google Scholar

[37]

M. Joyner and E. Coyle, Endurance exercise performance: The physiology of champions,, The Journal of Physiology, 586 (2008), 35.   Google Scholar

[38]

J. Lin, E. Keogh, S. Lonardi and B. Chiu, A symbolic representation of time series, with implications for streaming algorithms,, Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, (2003), 2.   Google Scholar

[39]

Y. Nakayama, K. Kudo and T. Ohtsuki, Variability and fluctuation in running gait cycle of trained runners and non-runners,, Gait Posture, 31 (2009), 331.  doi: 10.1016/j.gaitpost.2009.12.003.  Google Scholar

[40]

K. Jordan and K. M. Newell, The structure of variability in human walking and running is speed-dependent,, Exerc. Sport Sci. Rev., 36 (2008), 200.  doi: 10.1097/JES.0b013e3181877d71.  Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[3]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[4]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[5]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[6]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[7]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[8]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[9]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[10]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[11]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[12]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[13]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[14]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[15]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[16]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[17]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[18]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[19]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[20]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (0)

[Back to Top]