• Previous Article
    Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes
  • MBE Home
  • This Issue
  • Next Article
    A statistical approach to the use of control entropy identifies differences in constraints of gait in highly trained versus untrained runners
2012, 9(1): 147-164. doi: 10.3934/mbe.2012.9.147

Assessing the effect of non-pharmaceutical interventions on containing an emerging disease

1. 

School of Automation, Nanjing University of Science and Technology, Nanjing, 210094, China

2. 

Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing, 210094, China

Received  March 2011 Revised  July 2011 Published  December 2011

Non-pharmaceutical interventions, such as quarantine, isolation and entry screening, are usually the primary public health measures to control the spread of an emerging infectious disease through a human population. This paper proposes a multi-regional deterministic compartmental model to assess the effectiveness and implications of non-pharmaceutical interventions. The reproduction number is determined as the spectral radius of a nonnegative matrix product. Comparisons are made using the reproduction number, epidemic peaks and cumulative number of infections and mortality as indexes. Simulation results show that quarantine of suspected cases and isolation of cases with symptom are effective in reducing disease burden for multiple regions. Using entry screening strategy leads to a moderate time delay for epidemic peaks, but is of no help for preventing an epidemic breaking out. The study further shows that isolation strategy is always the best choice in the presence or absence of stringent hygiene precautions and should be given priority in combating an emerging epidemic.
Citation: Zi Sang, Zhipeng Qiu, Xiefei Yan, Yun Zou. Assessing the effect of non-pharmaceutical interventions on containing an emerging disease. Mathematical Biosciences & Engineering, 2012, 9 (1) : 147-164. doi: 10.3934/mbe.2012.9.147
References:
[1]

M. E. Alexander, S. M. Moghadas, G. Röst and J. Wu, A delay differential model for pandemic influenza with antiviral treatment,, Bull. Math. Biol., 70 (2008), 382.  doi: 10.1007/s11538-007-9257-2.  Google Scholar

[2]

M. E. Alexander, C. Bowman, Z. Feng, M. Gardam, S. Moghadas, G. Rost, J. Wu and P. Yan, Emergence of drug-resistance: Dynamical implications for pandemic influenza,, Proc. R. Soc. B., 274 (2007), 1675.  doi: 10.1098/rspb.2007.0422.  Google Scholar

[3]

J. Arino and P. van den Driessche, A multi-city epidemic model,, Math. Popul. Studies, 10 (2003), 175.  doi: 10.1080/08898480306720.  Google Scholar

[4]

J. Arino and P. van den Driessche, The basic reproduction number in a multi-city compartmental epidemic model,, in, 294 (2003), 135.   Google Scholar

[5]

J. Arino, R. Jordan and P. van den Driessche, Quarantine in a multi-species epidemics model with spatial dynamics,, Math. Biosci., 206 (2007), 46.  doi: 10.1016/j.mbs.2005.09.002.  Google Scholar

[6]

F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology,", Texts in Applied Mathematics, 40 (2001).   Google Scholar

[7]

C. Castillo-Chavez and A. Yakubu, Dispersal disease and life-history evolution,, Math. Biosci., 173 (2001), 35.  doi: 10.1016/S0025-5564(01)00065-7.  Google Scholar

[8]

G. Chowell, P. W. Fenimore, M. A. Castillo-Garsow and C. Castillo-Chavez, SARS outbreaks in Ontario, Hong Kong and Singapore: The role of diagnosis and isolation as a control mechanism,, J. Theor. Biol., 224 (2003), 1.  doi: 10.1016/S0022-5193(03)00228-5.  Google Scholar

[9]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases Model Building, Analysis and Interpretation,", Wiley Series in Mathematical and Computational Biology, (2000).   Google Scholar

[10]

Z. Feng, Final and peak epidemic sizes for SEIR models with quarantine and isolation,, Mathematical Biosciences and Engineering, 4 (2007), 675.  doi: 10.3934/mbe.2007.4.675.  Google Scholar

[11]

Z. Feng, Y. Yang, D. Xu, P. Zhang, M. McCauley and J. Glasser, Timely identification of optimal control strategies for emerging infectious diseases,, J. Theor. Biol., 259 (2009), 165.  doi: 10.1016/j.jtbi.2009.03.006.  Google Scholar

[12]

J. Glasser, D. Taneri, Z. Feng, J. H. Chuang, P. Tull, W. Thompson, M. M. McCauley and J. Alexander, Evaluation of targeted influenza vaccination strategies via population modeling,, PLoS One, 5 (2010).  doi: 10.1371/journal.pone.0012777.  Google Scholar

[13]

A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. van den Driessche, D. Gabrielson, C. Bowman, M. E. Alexander, S. Ardal, J. Wu and B. M. Sahai, Modeling strategies for controlling SARS outbreaks,, Proc. R. Soc. B., 271 (2004), 2223.  doi: 10.1098/rspb.2004.2800.  Google Scholar

[14]

H. W. Hethcote, A thousand and one epidemic models,, in, 100 (1994), 504.   Google Scholar

[15]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[16]

M. Lipsitch, T. Cohen, M. Muray and B. R. Levin, Antiviral resistance and the control of pandemic influenza,, PLoS Med., 4 (2007), 111.   Google Scholar

[17]

J. O. Lloyd-Smith, A. P. Galvani and W. M. Getz, Curtailing transmission of severe acute respiratory syndrome within a community and its hospital,, Proc. R. Soc. B., 170 (2003), 1979.  doi: 10.1098/rspb.2003.2481.  Google Scholar

[18]

I. M. Longini, M. E. Halloran, A. Nizam and Y. Yang, Containing pandemic influenza with antiviral agents,, Am. J. Epidemiol., 159 (2004), 623.  doi: 10.1093/aje/kwh092.  Google Scholar

[19]

J. M. McCaw and J. McVernon, Prophylaxis or treatment? Optimal use of an antiviral stockpile during an influenza pandemic,, Math. Biosci., 209 (2007), 336.  doi: 10.1016/j.mbs.2007.02.003.  Google Scholar

[20]

C. N. Podder, A. B. Gumel, C. Bowman and R. G. McLeod, Mathematical study of the impact of quarantine, isolation and vaccination in curtailing an epidemic,, Journal of Biological Sciences, 15 (2007), 1.   Google Scholar

[21]

Z. Qiu and Z. Feng, Transmission dynamics of an influenza model with vaccination and antiviral treatment,, Bull. Math. Biol., 72 (2010), 1.  doi: 10.1007/s11538-009-9435-5.  Google Scholar

[22]

R. R. Regoes and S. Bonhoeffer, Emergence of drug-resistant influenza virus: Population dynamical considerations,, Science, 312 (2006), 389.  doi: 10.1126/science.1122947.  Google Scholar

[23]

S. Ruan, W. Wang and S. A. Levin, The effect of global travel on the spread of SARS,, Math. Biosci. Eng., 3 (2006), 205.  doi: 10.3934/mbe.2006.3.205.  Google Scholar

[24]

A. R. Tuite, D. N. Fisman, J. C. Kwong and A. L. Greer, Optimal pandemic influenza vaccine allocation strategies for the Canadian population,, PLoS One, 5 (2010).  doi: 10.1371/journal.pone.0010520.  Google Scholar

[25]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[26]

W. Wang and X. Zhao, An epidemic model in a patchy environment,, Math. Biosci., 190 (2004), 97.  doi: 10.1016/j.mbs.2002.11.001.  Google Scholar

[27]

P. Yan and Z. Feng, Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness,, Math. Biosci., 224 (2010), 43.   Google Scholar

show all references

References:
[1]

M. E. Alexander, S. M. Moghadas, G. Röst and J. Wu, A delay differential model for pandemic influenza with antiviral treatment,, Bull. Math. Biol., 70 (2008), 382.  doi: 10.1007/s11538-007-9257-2.  Google Scholar

[2]

M. E. Alexander, C. Bowman, Z. Feng, M. Gardam, S. Moghadas, G. Rost, J. Wu and P. Yan, Emergence of drug-resistance: Dynamical implications for pandemic influenza,, Proc. R. Soc. B., 274 (2007), 1675.  doi: 10.1098/rspb.2007.0422.  Google Scholar

[3]

J. Arino and P. van den Driessche, A multi-city epidemic model,, Math. Popul. Studies, 10 (2003), 175.  doi: 10.1080/08898480306720.  Google Scholar

[4]

J. Arino and P. van den Driessche, The basic reproduction number in a multi-city compartmental epidemic model,, in, 294 (2003), 135.   Google Scholar

[5]

J. Arino, R. Jordan and P. van den Driessche, Quarantine in a multi-species epidemics model with spatial dynamics,, Math. Biosci., 206 (2007), 46.  doi: 10.1016/j.mbs.2005.09.002.  Google Scholar

[6]

F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology,", Texts in Applied Mathematics, 40 (2001).   Google Scholar

[7]

C. Castillo-Chavez and A. Yakubu, Dispersal disease and life-history evolution,, Math. Biosci., 173 (2001), 35.  doi: 10.1016/S0025-5564(01)00065-7.  Google Scholar

[8]

G. Chowell, P. W. Fenimore, M. A. Castillo-Garsow and C. Castillo-Chavez, SARS outbreaks in Ontario, Hong Kong and Singapore: The role of diagnosis and isolation as a control mechanism,, J. Theor. Biol., 224 (2003), 1.  doi: 10.1016/S0022-5193(03)00228-5.  Google Scholar

[9]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases Model Building, Analysis and Interpretation,", Wiley Series in Mathematical and Computational Biology, (2000).   Google Scholar

[10]

Z. Feng, Final and peak epidemic sizes for SEIR models with quarantine and isolation,, Mathematical Biosciences and Engineering, 4 (2007), 675.  doi: 10.3934/mbe.2007.4.675.  Google Scholar

[11]

Z. Feng, Y. Yang, D. Xu, P. Zhang, M. McCauley and J. Glasser, Timely identification of optimal control strategies for emerging infectious diseases,, J. Theor. Biol., 259 (2009), 165.  doi: 10.1016/j.jtbi.2009.03.006.  Google Scholar

[12]

J. Glasser, D. Taneri, Z. Feng, J. H. Chuang, P. Tull, W. Thompson, M. M. McCauley and J. Alexander, Evaluation of targeted influenza vaccination strategies via population modeling,, PLoS One, 5 (2010).  doi: 10.1371/journal.pone.0012777.  Google Scholar

[13]

A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. van den Driessche, D. Gabrielson, C. Bowman, M. E. Alexander, S. Ardal, J. Wu and B. M. Sahai, Modeling strategies for controlling SARS outbreaks,, Proc. R. Soc. B., 271 (2004), 2223.  doi: 10.1098/rspb.2004.2800.  Google Scholar

[14]

H. W. Hethcote, A thousand and one epidemic models,, in, 100 (1994), 504.   Google Scholar

[15]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[16]

M. Lipsitch, T. Cohen, M. Muray and B. R. Levin, Antiviral resistance and the control of pandemic influenza,, PLoS Med., 4 (2007), 111.   Google Scholar

[17]

J. O. Lloyd-Smith, A. P. Galvani and W. M. Getz, Curtailing transmission of severe acute respiratory syndrome within a community and its hospital,, Proc. R. Soc. B., 170 (2003), 1979.  doi: 10.1098/rspb.2003.2481.  Google Scholar

[18]

I. M. Longini, M. E. Halloran, A. Nizam and Y. Yang, Containing pandemic influenza with antiviral agents,, Am. J. Epidemiol., 159 (2004), 623.  doi: 10.1093/aje/kwh092.  Google Scholar

[19]

J. M. McCaw and J. McVernon, Prophylaxis or treatment? Optimal use of an antiviral stockpile during an influenza pandemic,, Math. Biosci., 209 (2007), 336.  doi: 10.1016/j.mbs.2007.02.003.  Google Scholar

[20]

C. N. Podder, A. B. Gumel, C. Bowman and R. G. McLeod, Mathematical study of the impact of quarantine, isolation and vaccination in curtailing an epidemic,, Journal of Biological Sciences, 15 (2007), 1.   Google Scholar

[21]

Z. Qiu and Z. Feng, Transmission dynamics of an influenza model with vaccination and antiviral treatment,, Bull. Math. Biol., 72 (2010), 1.  doi: 10.1007/s11538-009-9435-5.  Google Scholar

[22]

R. R. Regoes and S. Bonhoeffer, Emergence of drug-resistant influenza virus: Population dynamical considerations,, Science, 312 (2006), 389.  doi: 10.1126/science.1122947.  Google Scholar

[23]

S. Ruan, W. Wang and S. A. Levin, The effect of global travel on the spread of SARS,, Math. Biosci. Eng., 3 (2006), 205.  doi: 10.3934/mbe.2006.3.205.  Google Scholar

[24]

A. R. Tuite, D. N. Fisman, J. C. Kwong and A. L. Greer, Optimal pandemic influenza vaccine allocation strategies for the Canadian population,, PLoS One, 5 (2010).  doi: 10.1371/journal.pone.0010520.  Google Scholar

[25]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[26]

W. Wang and X. Zhao, An epidemic model in a patchy environment,, Math. Biosci., 190 (2004), 97.  doi: 10.1016/j.mbs.2002.11.001.  Google Scholar

[27]

P. Yan and Z. Feng, Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness,, Math. Biosci., 224 (2010), 43.   Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[3]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[4]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[5]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[6]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[7]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[8]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[9]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[10]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[11]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[12]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[13]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[14]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[15]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]