
Previous Article
An evaluation of dynamic outlet boundary conditions in a 1D fluid dynamics model
 MBE Home
 This Issue

Next Article
Nonlinear stochastic Markov processes and modeling uncertainty in populations
The implications of model formulation when transitioning from spatial to landscape ecology
1.  Department of Mathematics, The University of Miami, Coral Gables, FL 33124, United States, United States 
2.  Department of Biology, The University of Maryland, College Park, MD 20742, United States 
References:
[1] 
A. Berman and J. Plemmons, "Nonnegative Matrices in the Mathematical Sciences," Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New YorkLondon, 1979. Google Scholar 
[2] 
K. J. Brown, C. Cosner and J. Fleckinger, Principal eigenvalues for problems with indefinite weight function on $\mathbbR^n$, Proceedings of the American Mathematical Society, 109 (1990), 147155. doi: 10.2307/2048374. Google Scholar 
[3] 
R. S. Cantrell and C. Cosner, "Spatial Ecology via ReactionDiffusion Equations," Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. Google Scholar 
[4] 
C. Cosner, Reactiondiffusion equations and ecological modeling, in "Tutorials in Mathematical Biosciences. IV" (ed. A. Friedman), Lecture Notes in Mathematics, 1922, Springer, Berlin,(2008), 77115. Google Scholar 
[5] 
W. F. Fagan and F. Lutscher, Average dispersal success: Linking home range, dispersal, and metapopulation dynamics to refuge design, Ecological Applications, 16 (2006), 820828. doi: 10.1890/10510761(2006)016[0820:ADSLHR]2.0.CO;2. Google Scholar 
[6] 
I. Hanski, Predictive and practical metapopualtion models: The incidence function approach, in "Spatial Ecology" (eds. D. Tilman and P. Kareiva), Princton University Press, Princeton, NJ, (1997), 2145. Google Scholar 
[7] 
I. Hanski, "Metapopulation Ecology," Oxford University Press, Oxford, UK, 1999. Google Scholar 
[8] 
I. Hanski and O. Ovaskainen, The metapopulation capacity of a fragmented landscape, Nature, 404 (2000), 755758. doi: 10.1038/35008063. Google Scholar 
[9] 
R. Levins, Some demographic and genetic consequences of environmental heterogeneity for biological control, Bulletin of the Entomological Society of America, 15 (1969), 237240. Google Scholar 
[10] 
F. Lutscher and M. A. Lewis, Spatiallyexplicit matrix models, Journal of Mathematical Biology, 48 (2004), 293324. doi: 10.1007/s0028500302346. Google Scholar 
[11] 
O. Ovaskainen and I. Hanski, Spatially structured metapopulation models: Global and local assessment of metapopulation capacity, Theoretical Population Biology, 60 (2001), 281304. doi: 10.1006/tpbi.2001.1548. Google Scholar 
[12] 
R. Van Kirk and M. A. Lewis, Integrodifference models for persistence in fragmented habitats, Bulletin of Mathematical Biology, 59 (1997), 107137. Google Scholar 
show all references
References:
[1] 
A. Berman and J. Plemmons, "Nonnegative Matrices in the Mathematical Sciences," Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New YorkLondon, 1979. Google Scholar 
[2] 
K. J. Brown, C. Cosner and J. Fleckinger, Principal eigenvalues for problems with indefinite weight function on $\mathbbR^n$, Proceedings of the American Mathematical Society, 109 (1990), 147155. doi: 10.2307/2048374. Google Scholar 
[3] 
R. S. Cantrell and C. Cosner, "Spatial Ecology via ReactionDiffusion Equations," Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. Google Scholar 
[4] 
C. Cosner, Reactiondiffusion equations and ecological modeling, in "Tutorials in Mathematical Biosciences. IV" (ed. A. Friedman), Lecture Notes in Mathematics, 1922, Springer, Berlin,(2008), 77115. Google Scholar 
[5] 
W. F. Fagan and F. Lutscher, Average dispersal success: Linking home range, dispersal, and metapopulation dynamics to refuge design, Ecological Applications, 16 (2006), 820828. doi: 10.1890/10510761(2006)016[0820:ADSLHR]2.0.CO;2. Google Scholar 
[6] 
I. Hanski, Predictive and practical metapopualtion models: The incidence function approach, in "Spatial Ecology" (eds. D. Tilman and P. Kareiva), Princton University Press, Princeton, NJ, (1997), 2145. Google Scholar 
[7] 
I. Hanski, "Metapopulation Ecology," Oxford University Press, Oxford, UK, 1999. Google Scholar 
[8] 
I. Hanski and O. Ovaskainen, The metapopulation capacity of a fragmented landscape, Nature, 404 (2000), 755758. doi: 10.1038/35008063. Google Scholar 
[9] 
R. Levins, Some demographic and genetic consequences of environmental heterogeneity for biological control, Bulletin of the Entomological Society of America, 15 (1969), 237240. Google Scholar 
[10] 
F. Lutscher and M. A. Lewis, Spatiallyexplicit matrix models, Journal of Mathematical Biology, 48 (2004), 293324. doi: 10.1007/s0028500302346. Google Scholar 
[11] 
O. Ovaskainen and I. Hanski, Spatially structured metapopulation models: Global and local assessment of metapopulation capacity, Theoretical Population Biology, 60 (2001), 281304. doi: 10.1006/tpbi.2001.1548. Google Scholar 
[12] 
R. Van Kirk and M. A. Lewis, Integrodifference models for persistence in fragmented habitats, Bulletin of Mathematical Biology, 59 (1997), 107137. Google Scholar 
[1] 
Weiwei Ding, Xing Liang, Bin Xu. Spreading speeds of $N$season spatially periodic integrodifference models. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 34433472. doi: 10.3934/dcds.2013.33.3443 
[2] 
Arthur D. Lander, Qing Nie, Frederic Y. M. Wan. Spatially Distributed Morphogen Production and Morphogen Gradient Formation. Mathematical Biosciences & Engineering, 2005, 2 (2) : 239262. doi: 10.3934/mbe.2005.2.239 
[3] 
Cecilia Cavaterra, Maurizio Grasselli. Asymptotic behavior of population dynamics models with nonlocal distributed delays. Discrete & Continuous Dynamical Systems, 2008, 22 (4) : 861883. doi: 10.3934/dcds.2008.22.861 
[4] 
Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems  B, 2013, 18 (2) : 417435. doi: 10.3934/dcdsb.2013.18.417 
[5] 
Peixuan Weng, XiaoQiang Zhao. Spatial dynamics of a nonlocal and delayed population model in a periodic habitat. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 343366. doi: 10.3934/dcds.2011.29.343 
[6] 
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predatorprey equations. Discrete & Continuous Dynamical Systems  B, 2020, 25 (1) : 117139. doi: 10.3934/dcdsb.2019175 
[7] 
Vincenzo Capasso, Sebastian AniȚa. The interplay between models and public health policies: Regional control for a class of spatially structured epidemics (think globally, act locally). Mathematical Biosciences & Engineering, 2018, 15 (1) : 120. doi: 10.3934/mbe.2018001 
[8] 
Timothy C. Reluga, Allison K. Shaw. Optimal migratory behavior in spatiallyexplicit seasonal environments. Discrete & Continuous Dynamical Systems  B, 2014, 19 (10) : 33593378. doi: 10.3934/dcdsb.2014.19.3359 
[9] 
Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571579. doi: 10.3934/proc.2003.2003.571 
[10] 
Anouar El Harrak, Amal Bergam, Tri NguyenHuu, Pierre Auger, Rachid Mchich. Application of aggregation of variables methods to a class of twotime reactiondiffusionchemotaxis models of spatially structured populations with constant diffusion. Discrete & Continuous Dynamical Systems  S, 2021, 14 (7) : 21632181. doi: 10.3934/dcdss.2021055 
[11] 
Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems  B, 2015, 20 (6) : 17351757. doi: 10.3934/dcdsb.2015.20.1735 
[12] 
Thomas Lorenz. Nonlocal hyperbolic population models structured by size and spatial position: Wellposedness. Discrete & Continuous Dynamical Systems  B, 2019, 24 (8) : 45474628. doi: 10.3934/dcdsb.2019156 
[13] 
Robert Stephen Cantrell, Brian Coomes, Yifan Sha. A tridiagonal patch model of bacteria inhabiting a Nanofabricated landscape. Mathematical Biosciences & Engineering, 2017, 14 (4) : 953973. doi: 10.3934/mbe.2017050 
[14] 
Carlos CastilloChavez, Baojun Song. Dynamical Models of Tuberculosis and Their Applications. Mathematical Biosciences & Engineering, 2004, 1 (2) : 361404. doi: 10.3934/mbe.2004.1.361 
[15] 
Teresa Faria. Asymptotic behaviour for a class of delayed cooperative models with patch structure. Discrete & Continuous Dynamical Systems  B, 2013, 18 (6) : 15671579. doi: 10.3934/dcdsb.2013.18.1567 
[16] 
David M. Chan, Matt McCombs, Sarah Boegner, Hye Jin Ban, Suzanne L. Robertson. Extinction in discrete, competitive, multispecies patch models. Discrete & Continuous Dynamical Systems  B, 2015, 20 (6) : 15831590. doi: 10.3934/dcdsb.2015.20.1583 
[17] 
Luca GerardoGiorda, Pierre Magal, Shigui Ruan, Ousmane Seydi, Glenn Webb. Preface: Population dynamics in epidemiology and ecology. Discrete & Continuous Dynamical Systems  B, 2020, 25 (6) : iii. doi: 10.3934/dcdsb.2020125 
[18] 
Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and sizestructured population model with delayed birth process. Communications on Pure & Applied Analysis, 2016, 15 (2) : 637655. doi: 10.3934/cpaa.2016.15.637 
[19] 
Brooke L. Hollingsworth, R.E. Showalter. Semilinear degenerate parabolic systems and distributed capacitance models. Discrete & Continuous Dynamical Systems, 1995, 1 (1) : 5976. doi: 10.3934/dcds.1995.1.59 
[20] 
W. E. Fitzgibbon, M.E. Parrott, Glenn Webb. Diffusive epidemic models with spatial and age dependent heterogeneity. Discrete & Continuous Dynamical Systems, 1995, 1 (1) : 3557. doi: 10.3934/dcds.1995.1.35 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]