• Previous Article
    The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model
  • MBE Home
  • This Issue
  • Next Article
    Optimal control of chikungunya disease: Larvae reduction, treatment and prevention
2012, 9(2): 393-411. doi: 10.3934/mbe.2012.9.393

Impact of heterogeneity on the dynamics of an SEIR epidemic model

1. 

Department of Mathematics and Statistics, University of Victoria, Victoria, B.C., V8W 3R4, Canada, Canada

Received  April 2011 Revised  August 2011 Published  March 2012

An SEIR epidemic model with an arbitrarily distributed exposed stage is revisited to study the impact of heterogeneity on the spread of infectious diseases. The heterogeneity may come from age or behavior and disease stages, resulting in multi-group and multi-stage models, respectively. For each model, Lyapunov functionals are used to show that the basic reproduction number $\mathcal{R}_0$ gives a sharp threshold. If $\mathcal{R}_0\leq 1$, then the disease-free equilibrium is globally asymptotically stable and the disease dies out from all groups or stages. If $\mathcal{R}_0>1$, then the disease persists in all groups or stages, and the endemic equilibrium is globally asymptotically stable.
Citation: Zhisheng Shuai, P. van den Driessche. Impact of heterogeneity on the dynamics of an SEIR epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (2) : 393-411. doi: 10.3934/mbe.2012.9.393
References:
[1]

H. Andersson and T. Britton, Heterogeneity in epidemic models and its effect on the spread of infection, J. App. Prob., 35 (1998), 651-661.

[2]

R. M. Anderson and R. M. May, Spatial, temporal, and genetic heterogeneity in host populations and the design of immunization programmes, IMA J. Math. Appl. Med. Biol., 1 (1984), 233-266. doi: 10.1093/imammb/1.3.233.

[3]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control," Oxford University Press, Oxford, 1992.

[4]

F. V. Atkinson and J. R. Haddock, On determining phase spaces for functional differential equations, Funkcial. Ekvac., 31 (1988), 331-347.

[5]

A. Berman and R. J. Plemmons, "Nonnegative Matrices in the Mathematical Sciences," Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.

[6]

K. L. Cooke and P. van den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol., 35 (1996), 240-260. doi: 10.1007/s002850050051.

[7]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. doi: 10.1007/BF00178324.

[8]

Z. Feng, D. Xu and H. Zhao, Epidemiological models with non-exponentially distributed disease stages and applications to disease control, Bull. Math. Biol., 69 (2007), 1511-1536. doi: 10.1007/s11538-006-9174-9.

[9]

H. Guo and M. Y. Li, Global dynamics of a staged-progression model with amelioration for infectious diseases, J. Biol. Dyn., 2 (2008), 154-168. doi: 10.1080/17513750802120877.

[10]

H. Guo, M. Y. Li, and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., 14 (2006), 259-284.

[11]

H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136 (2008), 2793-2802. doi: 10.1090/S0002-9939-08-09341-6.

[12]

T. J. Hagenaars, C. A. Donnelly and N. M. Ferguson, Spatial heterogeneity and the persistence of infectious diseases, J. Theor. Biol., 229 (2004), 349-359. doi: 10.1016/j.jtbi.2004.04.002.

[13]

J. K. Hale and S. M. V. Lunel, "Introduction to Functional-Differential Equations," Appl. Math. Sci., Vol. 99, Springer-Verlag, New York, 1993.

[14]

H. W. Hethcote, H. W. Stech, and P. van den Driessche, Stability analysis for models of diseases without immunity, J. Math. Biol., 13 (1981), 185-198. doi: 10.1007/BF00275213.

[15]

H. W. Hethcote and D. W. Tudor, Integral equation models for endemic infectious diseases, J. Math. Biol., 9 (1980), 37-47. doi: 10.1007/BF00276034.

[16]

Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay," Lectures Notes in Math., Vol. 1473, Springer-Verlag, Berlin, 1991.

[17]

G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence, J. Math. Biol., 63 (2011), 125-139. doi: 10.1007/s00285-010-0368-2.

[18]

G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. App. Math., 70 (2010), 2693-2708. doi: 10.1137/090780821.

[19]

J. M. Hyman, J. Li and E. A. Stanley, The differential infectivity and staged progression models for the transmission of HIV, Math. Biosci., 155 (1999), 77-109. doi: 10.1016/S0025-5564(98)10057-3.

[20]

A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models, Math. Med. Biol., 21 (2004), 75-83. doi: 10.1093/imammb/21.2.75.

[21]

A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 1 (2004), 57-60. doi: 10.3934/mbe.2004.1.57.

[22]

A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28 (1976), 221-236. doi: 10.1016/0025-5564(76)90125-5.

[23]

J. P. LaSalle, "The Stability of Dynamical Systems," With an appendix: Limiting equations and stability of nonautonomous ordinary differential equations, by Z. Artstein, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA, 1976.

[24]

M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci., 125 (1995), 155-164. doi: 10.1016/0025-5564(95)92756-5.

[25]

M. Y. Li and J. S. Muldowney, A geometric approach to global stability, SIAM J. Math. Anal., 27 (1996), 1070-1083.

[26]

M. Y. Li, J. S. Muldowney and P. van den Driessche, Global stability of SEIRS models in epidemiology, Can. Appl. Math. Q., 7 (1999), 409-425.

[27]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. Math., 70 (2010), 2434-2448. doi: 10.1137/090779322.

[28]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay, Bull. Math. Bio., 72 (2010), 1429-1505. doi: 10.1007/s11538-010-9503-x.

[29]

M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differential Equations, 248 (2010), 1-20. doi: 10.1016/j.jde.2009.09.003.

[30]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 361 (2010), 38-47. doi: 10.1016/j.jmaa.2009.09.017.

[31]

S. Liu, S. Wang and L. Wang, Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, Nonlinear Anal. Real World Appl., 12 (2011), 119-127. doi: 10.1016/j.nonrwa.2010.06.001.

[32]

W. M. Liu, H. W. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380. doi: 10.1007/BF00277162.

[33]

A. L. Lloyd and R. M. May, Spatial heterogeneity in epidemic models, J. Theor. Biol., 179 (1996), 1-11. doi: 10.1006/jtbi.1996.0042.

[34]

C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 6 (2009), 603-610. doi: 10.3934/mbe.2009.6.603.

[35]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay--distributed or discrete, Nonlinear Anal. Real World Appl., 11 (2010), 55-59. doi: 10.1016/j.nonrwa.2008.10.014.

[36]

R. K. Miller, "Nonlinear Volterra Integral Equations," Mathematics Lecture Note Series, W. A. Benjamin, Inc., Menlo Park, California, 1971.

[37]

M. E. J. Newman, The spread of epidemic disease on networks, Phys. Rev. E, 66 (2002), 016128. doi: 10.1103/PhysRevE.66.016128.

[38]

C. P. Simon and J. A. Jacquez, Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations, SIAM J. Appl. Math., 52 (1992), 541-576. doi: 10.1137/0152030.

[39]

P. van den Driessche, Some epidemiological models with delays, in "Differential Equations and Applications to Biology and to Industry" (eds. M. Martelli et al.) (Claremont, CA, 1994), World Sci. Publ., River Edge, (1996), 507-520.

[40]

P. van den Driessche, L. Wang and X. Zou, Modeling diseases with latency and relapse, Math. Biosci. Eng., 4 (2007), 205-219.

[41]

P. van den Driessche, L. Wang and X. Zou, Impact of group mixing on disease dynamics, Math. Biosci., 228 (2010), 71-77. doi: 10.1016/j.mbs.2010.08.008.

[42]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[43]

P. van den Driessche and X. Zou, Modeling relapse in infectious diseases, Math. Biosci., 207 (2007), 89-103. doi: 10.1016/j.mbs.2006.09.017.

[44]

Z. Yuan and X. Zou, Global threshold property in an epidemic model for disease with latency spreading in a heterogeneous host population, Nonlinear Anal. Real World Appl., 11 (2010), 3479-3490. doi: 10.1016/j.nonrwa.2009.12.008.

show all references

References:
[1]

H. Andersson and T. Britton, Heterogeneity in epidemic models and its effect on the spread of infection, J. App. Prob., 35 (1998), 651-661.

[2]

R. M. Anderson and R. M. May, Spatial, temporal, and genetic heterogeneity in host populations and the design of immunization programmes, IMA J. Math. Appl. Med. Biol., 1 (1984), 233-266. doi: 10.1093/imammb/1.3.233.

[3]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control," Oxford University Press, Oxford, 1992.

[4]

F. V. Atkinson and J. R. Haddock, On determining phase spaces for functional differential equations, Funkcial. Ekvac., 31 (1988), 331-347.

[5]

A. Berman and R. J. Plemmons, "Nonnegative Matrices in the Mathematical Sciences," Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.

[6]

K. L. Cooke and P. van den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol., 35 (1996), 240-260. doi: 10.1007/s002850050051.

[7]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. doi: 10.1007/BF00178324.

[8]

Z. Feng, D. Xu and H. Zhao, Epidemiological models with non-exponentially distributed disease stages and applications to disease control, Bull. Math. Biol., 69 (2007), 1511-1536. doi: 10.1007/s11538-006-9174-9.

[9]

H. Guo and M. Y. Li, Global dynamics of a staged-progression model with amelioration for infectious diseases, J. Biol. Dyn., 2 (2008), 154-168. doi: 10.1080/17513750802120877.

[10]

H. Guo, M. Y. Li, and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., 14 (2006), 259-284.

[11]

H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136 (2008), 2793-2802. doi: 10.1090/S0002-9939-08-09341-6.

[12]

T. J. Hagenaars, C. A. Donnelly and N. M. Ferguson, Spatial heterogeneity and the persistence of infectious diseases, J. Theor. Biol., 229 (2004), 349-359. doi: 10.1016/j.jtbi.2004.04.002.

[13]

J. K. Hale and S. M. V. Lunel, "Introduction to Functional-Differential Equations," Appl. Math. Sci., Vol. 99, Springer-Verlag, New York, 1993.

[14]

H. W. Hethcote, H. W. Stech, and P. van den Driessche, Stability analysis for models of diseases without immunity, J. Math. Biol., 13 (1981), 185-198. doi: 10.1007/BF00275213.

[15]

H. W. Hethcote and D. W. Tudor, Integral equation models for endemic infectious diseases, J. Math. Biol., 9 (1980), 37-47. doi: 10.1007/BF00276034.

[16]

Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay," Lectures Notes in Math., Vol. 1473, Springer-Verlag, Berlin, 1991.

[17]

G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence, J. Math. Biol., 63 (2011), 125-139. doi: 10.1007/s00285-010-0368-2.

[18]

G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. App. Math., 70 (2010), 2693-2708. doi: 10.1137/090780821.

[19]

J. M. Hyman, J. Li and E. A. Stanley, The differential infectivity and staged progression models for the transmission of HIV, Math. Biosci., 155 (1999), 77-109. doi: 10.1016/S0025-5564(98)10057-3.

[20]

A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models, Math. Med. Biol., 21 (2004), 75-83. doi: 10.1093/imammb/21.2.75.

[21]

A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 1 (2004), 57-60. doi: 10.3934/mbe.2004.1.57.

[22]

A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28 (1976), 221-236. doi: 10.1016/0025-5564(76)90125-5.

[23]

J. P. LaSalle, "The Stability of Dynamical Systems," With an appendix: Limiting equations and stability of nonautonomous ordinary differential equations, by Z. Artstein, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA, 1976.

[24]

M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci., 125 (1995), 155-164. doi: 10.1016/0025-5564(95)92756-5.

[25]

M. Y. Li and J. S. Muldowney, A geometric approach to global stability, SIAM J. Math. Anal., 27 (1996), 1070-1083.

[26]

M. Y. Li, J. S. Muldowney and P. van den Driessche, Global stability of SEIRS models in epidemiology, Can. Appl. Math. Q., 7 (1999), 409-425.

[27]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. Math., 70 (2010), 2434-2448. doi: 10.1137/090779322.

[28]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay, Bull. Math. Bio., 72 (2010), 1429-1505. doi: 10.1007/s11538-010-9503-x.

[29]

M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differential Equations, 248 (2010), 1-20. doi: 10.1016/j.jde.2009.09.003.

[30]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 361 (2010), 38-47. doi: 10.1016/j.jmaa.2009.09.017.

[31]

S. Liu, S. Wang and L. Wang, Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, Nonlinear Anal. Real World Appl., 12 (2011), 119-127. doi: 10.1016/j.nonrwa.2010.06.001.

[32]

W. M. Liu, H. W. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380. doi: 10.1007/BF00277162.

[33]

A. L. Lloyd and R. M. May, Spatial heterogeneity in epidemic models, J. Theor. Biol., 179 (1996), 1-11. doi: 10.1006/jtbi.1996.0042.

[34]

C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 6 (2009), 603-610. doi: 10.3934/mbe.2009.6.603.

[35]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay--distributed or discrete, Nonlinear Anal. Real World Appl., 11 (2010), 55-59. doi: 10.1016/j.nonrwa.2008.10.014.

[36]

R. K. Miller, "Nonlinear Volterra Integral Equations," Mathematics Lecture Note Series, W. A. Benjamin, Inc., Menlo Park, California, 1971.

[37]

M. E. J. Newman, The spread of epidemic disease on networks, Phys. Rev. E, 66 (2002), 016128. doi: 10.1103/PhysRevE.66.016128.

[38]

C. P. Simon and J. A. Jacquez, Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations, SIAM J. Appl. Math., 52 (1992), 541-576. doi: 10.1137/0152030.

[39]

P. van den Driessche, Some epidemiological models with delays, in "Differential Equations and Applications to Biology and to Industry" (eds. M. Martelli et al.) (Claremont, CA, 1994), World Sci. Publ., River Edge, (1996), 507-520.

[40]

P. van den Driessche, L. Wang and X. Zou, Modeling diseases with latency and relapse, Math. Biosci. Eng., 4 (2007), 205-219.

[41]

P. van den Driessche, L. Wang and X. Zou, Impact of group mixing on disease dynamics, Math. Biosci., 228 (2010), 71-77. doi: 10.1016/j.mbs.2010.08.008.

[42]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[43]

P. van den Driessche and X. Zou, Modeling relapse in infectious diseases, Math. Biosci., 207 (2007), 89-103. doi: 10.1016/j.mbs.2006.09.017.

[44]

Z. Yuan and X. Zou, Global threshold property in an epidemic model for disease with latency spreading in a heterogeneous host population, Nonlinear Anal. Real World Appl., 11 (2010), 3479-3490. doi: 10.1016/j.nonrwa.2009.12.008.

[1]

Jinliang Wang, Hongying Shu. Global analysis on a class of multi-group SEIR model with latency and relapse. Mathematical Biosciences & Engineering, 2016, 13 (1) : 209-225. doi: 10.3934/mbe.2016.13.209

[2]

Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105

[3]

Sun-Ho Choi, Hyowon Seo, Minha Yoo. A multi-stage SIR model for rumor spreading. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2351-2372. doi: 10.3934/dcdsb.2020124

[4]

Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with generalized nonlinear incidence and vaccination age. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 977-996. doi: 10.3934/dcdsb.2016.21.977

[5]

Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057

[6]

Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1083-1106. doi: 10.3934/mbe.2015.12.1083

[7]

Li Deng, Wenjie Bi, Haiying Liu, Kok Lay Teo. A multi-stage method for joint pricing and inventory model with promotion constrains. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1653-1682. doi: 10.3934/dcdss.2020097

[8]

Jinliang Wang, Xianning Liu, Toshikazu Kuniya, Jingmei Pang. Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2795-2812. doi: 10.3934/dcdsb.2017151

[9]

Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba. A multi-group SIR epidemic model with age structure. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3515-3550. doi: 10.3934/dcdsb.2016109

[10]

Yoshiaki Muroya. A Lotka-Volterra system with patch structure (related to a multi-group SI epidemic model). Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 999-1008. doi: 10.3934/dcdss.2015.8.999

[11]

Lili Liu, Xianning Liu, Jinliang Wang. Threshold dynamics of a delayed multi-group heroin epidemic model in heterogeneous populations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2615-2630. doi: 10.3934/dcdsb.2016064

[12]

Gunduz Caginalp, Mark DeSantis. Multi-group asset flow equations and stability. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 109-150. doi: 10.3934/dcdsb.2011.16.109

[13]

Yuta Ishii. Stability of multi-peak symmetric stationary solutions for the Schnakenberg model with periodic heterogeneity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 2965-3031. doi: 10.3934/cpaa.2020130

[14]

Chunmei Zhang, Wenxue Li, Ke Wang. Graph-theoretic approach to stability of multi-group models with dispersal. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 259-280. doi: 10.3934/dcdsb.2015.20.259

[15]

Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1633-1679. doi: 10.3934/cpaa.2021035

[16]

C. Connell McCluskey. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2009, 6 (3) : 603-610. doi: 10.3934/mbe.2009.6.603

[17]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial and Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[18]

Xiaomei Feng, Zhidong Teng, Fengqin Zhang. Global dynamics of a general class of multi-group epidemic models with latency and relapse. Mathematical Biosciences & Engineering, 2015, 12 (1) : 99-115. doi: 10.3934/mbe.2015.12.99

[19]

Rui Wang, Xiaoyue Li, Denis S. Mukama. On stochastic multi-group Lotka-Volterra ecosystems with regime switching. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3499-3528. doi: 10.3934/dcdsb.2017177

[20]

Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (110)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]