2012, 9(2): 445-459. doi: 10.3934/mbe.2012.9.445

Analysis of a model for the effects of an external toxin on anaerobic digestion

1. 

Dominican University, 7900 W Division St, River Forest, IL 60305, United States

Received  November 2010 Revised  August 2011 Published  March 2012

Anaerobic digestion has been modeled as a two-stage process using coupled chemostat models with non-monotone growth functions, [9]. This study incorporates the effects of an external toxin. After reducing the model to a 3-dimensional system, global stability of boundary and interior equilibria is proved using differential inequalities and comparisons to the corresponding toxin-free model. Conditions are given under which the behavior of the toxin-free model is preserved. Introduction of the toxin results in additional patterns such as bistabilities of coexistence steady states or of a periodic orbit and an interior steady state.
Citation: Marion Weedermann. Analysis of a model for the effects of an external toxin on anaerobic digestion. Mathematical Biosciences & Engineering, 2012, 9 (2) : 445-459. doi: 10.3934/mbe.2012.9.445
References:
[1]

, "Agricultural Biogas Casebook,", Great Lakes Regional Biomass Energy Program. Available from: \url{http://www.cglg.org/biomass/pub/AgriculturalBiogasCasebook.pdf}., ().   Google Scholar

[2]

D. J. Batstone, J. Keller, I. Angelidaki, S. Kalyhuzhnyi, S. G. Pavlosthathis, A. Rozzi, W. Sanders, H. Siegrist and V. Vavilin, (IWA Task Group on Modeling Anaerobic Digestion Processes), "Anaerobic Digestion Model No.1 (ADM1),", IWA Publishing, (2002).   Google Scholar

[3]

T. Barkay and I. Wagner-Döbler, Microbial transformations of mercury: Potentials, challenges, and achievements in controlling mercury toxicity in the environment,, Adv. Appl. Microbiol., 57 (2005), 1.  doi: 10.1016/S0065-2164(05)57001-1.  Google Scholar

[4]

J. P. Braselton and P. Waltman, A competition model with dynamically allocated inhibitor production,, Math. Biosci., 173 (2001), 55.  doi: 10.1016/S0025-5564(01)00078-5.  Google Scholar

[5]

J. D. Bryers, Structured modeling of anaerobic digestion of biomass particulates,, Biotechn. Bioeng., 27 (1984), 638.  doi: 10.1002/bit.260270514.  Google Scholar

[6]

G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake,, SIAM J. Appl. Math., 45 (1985), 138.  doi: 10.1137/0145006.  Google Scholar

[7]

M. Gerardi, "The Microbiology of Anaerobic Digesters,'', Wiley Interscience, (2003).  doi: 10.1002/0471468967.  Google Scholar

[8]

M. El Hajji, F. Mazenc and J. Harmand, A mathematical study of syntrophic relationship of a model of anaerobic digestion process,, Math. Biosci. Eng., 7 (2010), 641.  doi: 10.3934/mbe.2010.7.641.  Google Scholar

[9]

J. Hess and O. Bernard, Design and study of a risk management criterion for an unstable wastewater treatment process,, J. of Process Control, 18 (2008), 71.  doi: 10.1016/j.jprocont.2007.05.005.  Google Scholar

[10]

S.-B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor,, Math. Biosci., 187 (2004), 53.  doi: 10.1016/j.mbs.2003.07.004.  Google Scholar

[11]

S. Jeyaseelan, A simple mathematical model for anaerobic digestion process,, Wat. Sci. Tech., 35 (1997), 185.  doi: 10.1016/S0273-1223(97)00166-2.  Google Scholar

[12]

B. Li, Global asymptotic behaviour of the chemostat: General response function and differential removal rates,, SIAM J. Appl. Math., 59 (1999), 411.  doi: 10.1137/S003613999631100X.  Google Scholar

[13]

G. Lyberatos and I. V. Skiadas, Modelling of anaerobic digestion-a review,, Global Nest: The Int. J., 1 (1999), 63.   Google Scholar

[14]

L. Markus, Asymptotically autonomous differential systems,, in, 3 (1953), 17.   Google Scholar

[15]

R. S. Oremland, C. W. Culbertson and M. Winfrey, Methylmercurcy decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation,, Appl. Env. Microbiology, 57 (1991), 130.   Google Scholar

[16]

K. Pak and R. Bartha, Products of mercury demethylation by sulfidogens and methanogens,, Bull. Environ. Contam. Toxicol., 61 (1998), 690.  doi: 10.1007/s001289900816.  Google Scholar

[17]

G. E. Powell, Stable coexistence of syntrophic associations in continuous culture,, J. Chem. Tech. Biotechnol. B, 35 (1985), 46.  doi: 10.1002/jctb.280350109.  Google Scholar

[18]

H. Smith and P. Waltman, "The Theory of the Chemostat: Dynamics of Microbial Competition,'', Cambridge Studies in Mathematical Biology, 13 (1995).   Google Scholar

[19]

H. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations,, J. of Math. Biology, 30 (1992), 755.   Google Scholar

[20]

G. S. K. Wolkowicz and Z. Lu, Global Dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates,, SIAM J. Appl. Math., 52 (1992), 222.  doi: 10.1137/0152012.  Google Scholar

[21]

L. Zhu, X. Huang and H. Su, Bifurcation for a functional yield chemostat when one competitor produces a toxin,, J. Math. Anal. Appl., 329 (2007), 891.  doi: 10.1016/j.jmaa.2006.06.062.  Google Scholar

show all references

References:
[1]

, "Agricultural Biogas Casebook,", Great Lakes Regional Biomass Energy Program. Available from: \url{http://www.cglg.org/biomass/pub/AgriculturalBiogasCasebook.pdf}., ().   Google Scholar

[2]

D. J. Batstone, J. Keller, I. Angelidaki, S. Kalyhuzhnyi, S. G. Pavlosthathis, A. Rozzi, W. Sanders, H. Siegrist and V. Vavilin, (IWA Task Group on Modeling Anaerobic Digestion Processes), "Anaerobic Digestion Model No.1 (ADM1),", IWA Publishing, (2002).   Google Scholar

[3]

T. Barkay and I. Wagner-Döbler, Microbial transformations of mercury: Potentials, challenges, and achievements in controlling mercury toxicity in the environment,, Adv. Appl. Microbiol., 57 (2005), 1.  doi: 10.1016/S0065-2164(05)57001-1.  Google Scholar

[4]

J. P. Braselton and P. Waltman, A competition model with dynamically allocated inhibitor production,, Math. Biosci., 173 (2001), 55.  doi: 10.1016/S0025-5564(01)00078-5.  Google Scholar

[5]

J. D. Bryers, Structured modeling of anaerobic digestion of biomass particulates,, Biotechn. Bioeng., 27 (1984), 638.  doi: 10.1002/bit.260270514.  Google Scholar

[6]

G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake,, SIAM J. Appl. Math., 45 (1985), 138.  doi: 10.1137/0145006.  Google Scholar

[7]

M. Gerardi, "The Microbiology of Anaerobic Digesters,'', Wiley Interscience, (2003).  doi: 10.1002/0471468967.  Google Scholar

[8]

M. El Hajji, F. Mazenc and J. Harmand, A mathematical study of syntrophic relationship of a model of anaerobic digestion process,, Math. Biosci. Eng., 7 (2010), 641.  doi: 10.3934/mbe.2010.7.641.  Google Scholar

[9]

J. Hess and O. Bernard, Design and study of a risk management criterion for an unstable wastewater treatment process,, J. of Process Control, 18 (2008), 71.  doi: 10.1016/j.jprocont.2007.05.005.  Google Scholar

[10]

S.-B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor,, Math. Biosci., 187 (2004), 53.  doi: 10.1016/j.mbs.2003.07.004.  Google Scholar

[11]

S. Jeyaseelan, A simple mathematical model for anaerobic digestion process,, Wat. Sci. Tech., 35 (1997), 185.  doi: 10.1016/S0273-1223(97)00166-2.  Google Scholar

[12]

B. Li, Global asymptotic behaviour of the chemostat: General response function and differential removal rates,, SIAM J. Appl. Math., 59 (1999), 411.  doi: 10.1137/S003613999631100X.  Google Scholar

[13]

G. Lyberatos and I. V. Skiadas, Modelling of anaerobic digestion-a review,, Global Nest: The Int. J., 1 (1999), 63.   Google Scholar

[14]

L. Markus, Asymptotically autonomous differential systems,, in, 3 (1953), 17.   Google Scholar

[15]

R. S. Oremland, C. W. Culbertson and M. Winfrey, Methylmercurcy decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation,, Appl. Env. Microbiology, 57 (1991), 130.   Google Scholar

[16]

K. Pak and R. Bartha, Products of mercury demethylation by sulfidogens and methanogens,, Bull. Environ. Contam. Toxicol., 61 (1998), 690.  doi: 10.1007/s001289900816.  Google Scholar

[17]

G. E. Powell, Stable coexistence of syntrophic associations in continuous culture,, J. Chem. Tech. Biotechnol. B, 35 (1985), 46.  doi: 10.1002/jctb.280350109.  Google Scholar

[18]

H. Smith and P. Waltman, "The Theory of the Chemostat: Dynamics of Microbial Competition,'', Cambridge Studies in Mathematical Biology, 13 (1995).   Google Scholar

[19]

H. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations,, J. of Math. Biology, 30 (1992), 755.   Google Scholar

[20]

G. S. K. Wolkowicz and Z. Lu, Global Dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates,, SIAM J. Appl. Math., 52 (1992), 222.  doi: 10.1137/0152012.  Google Scholar

[21]

L. Zhu, X. Huang and H. Su, Bifurcation for a functional yield chemostat when one competitor produces a toxin,, J. Math. Anal. Appl., 329 (2007), 891.  doi: 10.1016/j.jmaa.2006.06.062.  Google Scholar

[1]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[2]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[3]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[4]

Sergiu Aizicovici, Simeon Reich. Anti-periodic solutions to a class of non-monotone evolution equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 35-42. doi: 10.3934/dcds.1999.5.35

[5]

Jun Chen, Wenyu Sun, Zhenghao Yang. A non-monotone retrospective trust-region method for unconstrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (4) : 919-944. doi: 10.3934/jimo.2013.9.919

[6]

Alfonso Castro, Benjamin Preskill. Existence of solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 649-658. doi: 10.3934/dcds.2010.28.649

[7]

José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078

[8]

Miled El Hajji, Frédéric Mazenc, Jérôme Harmand. A mathematical study of a syntrophic relationship of a model of anaerobic digestion process. Mathematical Biosciences & Engineering, 2010, 7 (3) : 641-656. doi: 10.3934/mbe.2010.7.641

[9]

Pablo Amster, Manuel Zamora. Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4819-4835. doi: 10.3934/dcds.2018211

[10]

Anatoli F. Ivanov, Bernhard Lani-Wayda. Periodic solutions for three-dimensional non-monotone cyclic systems with time delays. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 667-692. doi: 10.3934/dcds.2004.11.667

[11]

José Caicedo, Alfonso Castro, Rodrigo Duque, Arturo Sanjuán. Existence of $L^p$-solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1193-1202. doi: 10.3934/dcdss.2014.7.1193

[12]

Frederic Mazenc, Gonzalo Robledo, Michael Malisoff. Stability and robustness analysis for a multispecies chemostat model with delays in the growth rates and uncertainties. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1851-1872. doi: 10.3934/dcdsb.2018098

[13]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[14]

Zhiqi Lu. Global stability for a chemostat-type model with delayed nutrient recycling. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 663-670. doi: 10.3934/dcdsb.2004.4.663

[15]

Je-Chiang Tsai. Global exponential stability of traveling waves in monotone bistable systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 601-623. doi: 10.3934/dcds.2008.21.601

[16]

E. Trofimchuk, Sergei Trofimchuk. Global stability in a regulated logistic growth model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 461-468. doi: 10.3934/dcdsb.2005.5.461

[17]

Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319

[18]

Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 203-209. doi: 10.3934/dcdss.2020011

[19]

Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

[20]

Augusto Visintin. Weak structural stability of pseudo-monotone equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2763-2796. doi: 10.3934/dcds.2015.35.2763

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]