2012, 9(3): 461-485. doi: 10.3934/mbe.2012.9.461

Stochastic models for competing species with a shared pathogen

1. 

Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-1042, United States

2. 

Department of Mathematics, Oregon State University, Corvallis, OR 97331-4605, United States

Received  December 2011 Revised  March 2012 Published  July 2012

The presence of a pathogen among multiple competing species has important ecological implications. For example, a pathogen may change the competitive outcome, resulting in replacement of a native species by a non-native species. Alternately, if a pathogen becomes established, there may be a drastic reduction in species numbers. Stochastic variability in the birth, death and pathogen transmission processes plays an important role in determining the success of species or pathogen invasion. We investigate these phenomena while studying the dynamics of deterministic and stochastic models for $n$ competing species with a shared pathogen. The deterministic model is a system of ordinary differential equations for $n$ competing species in which a single shared pathogen is transmitted among the $n$ species. There is no immunity from infection, individuals either die or recover and become immediately susceptible, an SIS disease model. Analytical results about pathogen persistence or extinction are summarized for the deterministic model for two and three species and new results about stability of the infection-free state and invasion by one species of a system of $n-1$ species are obtained. New stochastic models are derived in the form of continuous-time Markov chains and stochastic differential equations. Branching process theory is applied to the continuous-time Markov chain model to estimate probabilities for pathogen extinction or species invasion. Finally, numerical simulations are conducted to explore the effect of disease on two-species competition, to illustrate some of the analytical results and to highlight some of the differences in the stochastic and deterministic models.
Citation: Linda J. S. Allen, Vrushali A. Bokil. Stochastic models for competing species with a shared pathogen. Mathematical Biosciences & Engineering, 2012, 9 (3) : 461-485. doi: 10.3934/mbe.2012.9.461
References:
[1]

E. Allen, "Modeling With Itô Stochastic Differential Equations,'', Mathematical Modelling: Theory and Applications, 22 (2007).   Google Scholar

[2]

E. J. Allen, L. J. S. Allen, A. Arciniega and P. Greenwood, Construction of equivalent stochastic differential equation models,, Stoch. Anal. Appl., 26 (2008), 274.   Google Scholar

[3]

L. J. S. Allen, "An Introduction to Mathematical Biology,'', Prentice Hall, (2007).   Google Scholar

[4]

L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,'', 2nd edition, (2011).   Google Scholar

[5]

L. J. S. Allen and N. Kirupaharan, Asymptotic dynamics of deterministic and stochastic epidemic models with multiple pathogens,, Int. J. Numer. Anal. Modeling, 2 (2005), 329.   Google Scholar

[6]

R. M. Anderson and R. M. May, The invasion, persistence and spread of infectious diseases with animal and plant communities,, Phil. Trans. R. Soc. Lond. B, 314 (1986), 533.  doi: 10.1098/rstb.1986.0072.  Google Scholar

[7]

N. T. J. Bailey, "The Elements of Stochastic Processes with Applications to the Natural Sciences,'', Reprint of the 1964 original, (1964).   Google Scholar

[8]

M. S. Bartlett, The relevance of stochastic models for large-scale epidemiological phenomena,, Appl. Statist., 13 (1965), 2.   Google Scholar

[9]

M. Begon, R. G. Bowers, N. Kadianakis and D. E. Hodgkinson, Disease and community structure: The importance of host self-regulation in a host-host-pathogen model,, Am. Nat., 139 (1992), 1131.  doi: 10.1086/285379.  Google Scholar

[10]

V. A. Bokil and M.-R. Leung, An analysis of the coexistence of three competing species with a shared pathogen,, Technical Report ORST-MATH-11-02, (2011), 11.   Google Scholar

[11]

E. T. Borer, P. R. Hosseini, E. W. Seabloom and A. P. Dobson, Pathogen-induced reversal of native dominance in a grassland community,, Proc. Natl. Acad. Sci. U. S. A., 104 (2007), 5473.   Google Scholar

[12]

R. G. Bowers and J. Turner, Community structure and the interplay between interspecific infection and competition,, J. Theor. Biol., 187 (1997), 95.  doi: 10.1006/jtbi.1997.0418.  Google Scholar

[13]

S. K. Collinge and C. Ray, "Disease Ecology: Community Structure and Pathogen Dynamics,", Oxford Univ. Press, (2006).   Google Scholar

[14]

A. Dobson, Population dynamics of pathogens with multiple host species,, Am. Nat., 164 (2004).  doi: 10.1086/424681.  Google Scholar

[15]

R. Durrett, Mutual invadability implies coexistence in spatial models,, Mem. Am. Math. Soc., 156 (2002).   Google Scholar

[16]

R. Durrett, Special invited paper: Coexistence in stochastic spatial models,, Ann. Appl. Probab., 19 (2009), 477.  doi: 10.1214/08-AAP590.  Google Scholar

[17]

R. Durrett and C. Neuhauser, Coexistence results for some competition models,, Ann. Appl. Probab., 7 (1997), 10.   Google Scholar

[18]

L. Gilbert, R. Norman, K. M. Laurenson, H. W. Reid and P. J. Hudson, Disease persistence and apparent competition in a three-host community: An empirical and analytical study of large-scale, wild populations,, J. Anim. Ecol., 70 (2001), 1053.  doi: 10.1046/j.0021-8790.2001.00558.x.  Google Scholar

[19]

D. T. Gillespie, "Markov Processes: An Introduction for Physical Scientists,'', Academic Press, (1992).   Google Scholar

[20]

J. V. Greenman and P. J. Hudson, Infected coexistence instability with and without density-dependent regulation,, J. Theor. Biol., 185 (1997), 345.  doi: 10.1006/jtbi.1996.0309.  Google Scholar

[21]

M. Griffiths and D. Greenhalgh, The probability of extinction in a bovine respiratory syncytial virus epidemic model,, Math. Biosci., 231 (2011), 144.  doi: 10.1016/j.mbs.2011.02.011.  Google Scholar

[22]

B. A. Han, "The Effects of an Emerging Pathogen on Amphibian Host Behaviors and Interactions,", Ph.D thesis, (2009).   Google Scholar

[23]

L. Han, Z. Ma and T. Shi, An SIRS epidemic model of two competitive species,, Math. Comput. Model., 37 (2003), 87.  doi: 10.1016/S0895-7177(03)80008-0.  Google Scholar

[24]

L. Han and A. Pugliese, Epidemics in two competing species,, Nonlinear Anal. Real World Appl., 10 (2009), 723.  doi: 10.1016/j.nonrwa.2007.11.005.  Google Scholar

[25]

T. E. Harris, "The Theory of Branching Processes,'', Die Grundlehren der Mathematischen Wissenschaften, (1963).   Google Scholar

[26]

M. J. Hatcher, J. T. A. Dick and A. M. Dunn, How parasites affect interactions between competitors and predators,, Ecol. Lett., 9 (2006), 1253.  doi: 10.1111/j.1461-0248.2006.00964.x.  Google Scholar

[27]

D. J. Higham, Modeling and simulating chemical reactions,, SIAM Rev., 50 (2008), 347.  doi: 10.1137/060666457.  Google Scholar

[28]

R. D. Holt and A. P. Dobson, Chapter 2: Extending the principles of community ecology to address the epidemiology of host-pathogen systems, in "Disease Ecology: Community Structure and Pathogen Dynamics" (eds. S. K. Collinge and C. Ray),, Oxford Univ. Press, (2006), 2.   Google Scholar

[29]

R. D. Holt and J. Pickering, Infectious disease and species coexistence: A model of Lotka-Volterra form,, Am. Nat., 126 (1985), 196.  doi: 10.1086/284409.  Google Scholar

[30]

P. Hudson and J. Greenman, Competition mediated by parasites: Biological and theoretical progress,, Trends Ecol. Evol., 13 (1998), 387.   Google Scholar

[31]

P. Jagers, "Branching Processes with Biological Applications,'', Wiley Series in Probability and Mathematical Statistics Applied Probability and Statistics, (1975).   Google Scholar

[32]

S. T. Karlin and H. M. Taylor, "A First Course in Stochastic Processes,'', 2nd edition, (1975).   Google Scholar

[33]

J. M. Kiesecker and A. R. Blaustein, Pathogen reverses competition between larval amphibians,, Ecology, 80 (1999), 2442.   Google Scholar

[34]

P. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'', Applications of Mathematics (New York), 23 (1992).   Google Scholar

[35]

N. Lanchier and C. Neuhauser, A spatially explicit model for competition among specialists and generalists in a heterogeneous environment,, Ann. Appl. Probab., 16 (2006), 1385.  doi: 10.1214/105051606000000394.  Google Scholar

[36]

N. Lanchier and C. Neuhauser, Stochastic spatial models of host-pathogen and host-mutualist interactions. I,, Ann. Appl. Probab., 16 (2006), 448.  doi: 10.1214/105051605000000782.  Google Scholar

[37]

C. A. Manore, "Non-Spatial and Spatial Models for Multi-Host Pathogen Spread in Competing Species: Applications to Barley Yellow Dwarf Virus and Rinderpest,", Ph.D thesis, (2012).   Google Scholar

[38]

R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species,, Special issue on mathematics and the social and biological sciences, 29 (1975), 243.  doi: 10.1137/0129022.  Google Scholar

[39]

H. McCallum, N. Barlow and J. Hone, How should pathogen transmission be modelled?,, Trends Ecol. Evol., 16 (2001), 295.  doi: 10.1016/S0169-5347(01)02144-9.  Google Scholar

[40]

R. K. McCormack, "Multi-Host Multi-Patch Mathematical Epidemic Models for Disease Emergence with Applications to Hantavirus in Wild Rodents,", Ph.D thesis, (2006).   Google Scholar

[41]

R. K. McCormack and L. J. S. Allen, Stochastic SIS and SIR multihost epidemic models,, in, (2006), 775.   Google Scholar

[42]

R. K. McCormack and L. J. S. Allen, Disease emergence in multi-host epidemic models,, Math. Med. Biol., 24 (2007), 17.  doi: 10.1093/imammb/dql021.  Google Scholar

[43]

C. J. Mode, "Multitype Branching Processes. Theory and Applications,'', Modern Analytic and Computational Methods in Science and Mathematics, (1971).   Google Scholar

[44]

S. M. Moore, C. A. Manore, V. A. Bokil, E. T. Borer and P. R. Hosseini, Spatiotemporal model of barley and cereal yellow dwarf virus transmission dynamics with seasonality and plant competition,, Bull. Math. Biol., 73 (2011), 2707.   Google Scholar

[45]

C. Neuhauser and S. W. Pacala, An explicitly spatial version of the Lotka-Volterra model with interspecific competition,, Ann. Appl. Probab., 9 (1999), 1226.   Google Scholar

[46]

R. Norman, R. G. Bowers, M. Begon and P. J. Hudson, Persistence of tick-borne virus in the presence of multiple host species: Tick reservoirs and parasite mediated competition,, J. Theor. Biol., 200 (1999), 111.  doi: 10.1006/jtbi.1999.0982.  Google Scholar

[47]

J. M. Ortega, "Matrix Theory. A Second Course,", The University Series in Mathematics, (1987).   Google Scholar

[48]

S. Pénisson, "Conditional Limit Theorems for Multitype Branching Processes and Illustration in Epidemiological Risk Analysis,", Ph.D thesis, (2010).   Google Scholar

[49]

R. A. Saenz and H. W. Hethcote, Competing species models with an infectious disease,, Math. Biosci. Eng., 3 (2006), 219.   Google Scholar

[50]

D. M. Tompkins, R. A. H. Draycott and P. J. Hudson, Field evidence for apparent competition mediated via the shared parasites of two gamebird species,, Ecol. Lett., 3 (2000), 10.   Google Scholar

[51]

D. M. Tompkins, A. R. White and M. Boots, Ecological replacement of native red squirrels by invasive greys driven by disease,, Ecol. Lett., 6 (2003), 189.   Google Scholar

[52]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.   Google Scholar

[53]

P. van den Driessche and M. L. Zeeman, Disease induced oscillations between two competing species,, SIAM J. Appl. Dyn. Sys., 3 (2004), 601.   Google Scholar

[54]

E. Venturino, The effects of diseases on competing species,, Math. Biosci., 174 (2001), 111.  doi: 10.1016/S0025-5564(01)00081-5.  Google Scholar

[55]

P. Whittle, The outcome of a stochastic epidemic: A note on Bailey's paper,, Biometrika, 42 (1955), 116.  doi: 10.2307/2333427.  Google Scholar

[56]

E. C. Zeeman and M. L. Zeeman, From local to global behavior in competitive Lotka-Volterra systems,, Trans. Am. Math. Soc., 355 (2003), 713.  doi: 10.1090/S0002-9947-02-03103-3.  Google Scholar

show all references

References:
[1]

E. Allen, "Modeling With Itô Stochastic Differential Equations,'', Mathematical Modelling: Theory and Applications, 22 (2007).   Google Scholar

[2]

E. J. Allen, L. J. S. Allen, A. Arciniega and P. Greenwood, Construction of equivalent stochastic differential equation models,, Stoch. Anal. Appl., 26 (2008), 274.   Google Scholar

[3]

L. J. S. Allen, "An Introduction to Mathematical Biology,'', Prentice Hall, (2007).   Google Scholar

[4]

L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,'', 2nd edition, (2011).   Google Scholar

[5]

L. J. S. Allen and N. Kirupaharan, Asymptotic dynamics of deterministic and stochastic epidemic models with multiple pathogens,, Int. J. Numer. Anal. Modeling, 2 (2005), 329.   Google Scholar

[6]

R. M. Anderson and R. M. May, The invasion, persistence and spread of infectious diseases with animal and plant communities,, Phil. Trans. R. Soc. Lond. B, 314 (1986), 533.  doi: 10.1098/rstb.1986.0072.  Google Scholar

[7]

N. T. J. Bailey, "The Elements of Stochastic Processes with Applications to the Natural Sciences,'', Reprint of the 1964 original, (1964).   Google Scholar

[8]

M. S. Bartlett, The relevance of stochastic models for large-scale epidemiological phenomena,, Appl. Statist., 13 (1965), 2.   Google Scholar

[9]

M. Begon, R. G. Bowers, N. Kadianakis and D. E. Hodgkinson, Disease and community structure: The importance of host self-regulation in a host-host-pathogen model,, Am. Nat., 139 (1992), 1131.  doi: 10.1086/285379.  Google Scholar

[10]

V. A. Bokil and M.-R. Leung, An analysis of the coexistence of three competing species with a shared pathogen,, Technical Report ORST-MATH-11-02, (2011), 11.   Google Scholar

[11]

E. T. Borer, P. R. Hosseini, E. W. Seabloom and A. P. Dobson, Pathogen-induced reversal of native dominance in a grassland community,, Proc. Natl. Acad. Sci. U. S. A., 104 (2007), 5473.   Google Scholar

[12]

R. G. Bowers and J. Turner, Community structure and the interplay between interspecific infection and competition,, J. Theor. Biol., 187 (1997), 95.  doi: 10.1006/jtbi.1997.0418.  Google Scholar

[13]

S. K. Collinge and C. Ray, "Disease Ecology: Community Structure and Pathogen Dynamics,", Oxford Univ. Press, (2006).   Google Scholar

[14]

A. Dobson, Population dynamics of pathogens with multiple host species,, Am. Nat., 164 (2004).  doi: 10.1086/424681.  Google Scholar

[15]

R. Durrett, Mutual invadability implies coexistence in spatial models,, Mem. Am. Math. Soc., 156 (2002).   Google Scholar

[16]

R. Durrett, Special invited paper: Coexistence in stochastic spatial models,, Ann. Appl. Probab., 19 (2009), 477.  doi: 10.1214/08-AAP590.  Google Scholar

[17]

R. Durrett and C. Neuhauser, Coexistence results for some competition models,, Ann. Appl. Probab., 7 (1997), 10.   Google Scholar

[18]

L. Gilbert, R. Norman, K. M. Laurenson, H. W. Reid and P. J. Hudson, Disease persistence and apparent competition in a three-host community: An empirical and analytical study of large-scale, wild populations,, J. Anim. Ecol., 70 (2001), 1053.  doi: 10.1046/j.0021-8790.2001.00558.x.  Google Scholar

[19]

D. T. Gillespie, "Markov Processes: An Introduction for Physical Scientists,'', Academic Press, (1992).   Google Scholar

[20]

J. V. Greenman and P. J. Hudson, Infected coexistence instability with and without density-dependent regulation,, J. Theor. Biol., 185 (1997), 345.  doi: 10.1006/jtbi.1996.0309.  Google Scholar

[21]

M. Griffiths and D. Greenhalgh, The probability of extinction in a bovine respiratory syncytial virus epidemic model,, Math. Biosci., 231 (2011), 144.  doi: 10.1016/j.mbs.2011.02.011.  Google Scholar

[22]

B. A. Han, "The Effects of an Emerging Pathogen on Amphibian Host Behaviors and Interactions,", Ph.D thesis, (2009).   Google Scholar

[23]

L. Han, Z. Ma and T. Shi, An SIRS epidemic model of two competitive species,, Math. Comput. Model., 37 (2003), 87.  doi: 10.1016/S0895-7177(03)80008-0.  Google Scholar

[24]

L. Han and A. Pugliese, Epidemics in two competing species,, Nonlinear Anal. Real World Appl., 10 (2009), 723.  doi: 10.1016/j.nonrwa.2007.11.005.  Google Scholar

[25]

T. E. Harris, "The Theory of Branching Processes,'', Die Grundlehren der Mathematischen Wissenschaften, (1963).   Google Scholar

[26]

M. J. Hatcher, J. T. A. Dick and A. M. Dunn, How parasites affect interactions between competitors and predators,, Ecol. Lett., 9 (2006), 1253.  doi: 10.1111/j.1461-0248.2006.00964.x.  Google Scholar

[27]

D. J. Higham, Modeling and simulating chemical reactions,, SIAM Rev., 50 (2008), 347.  doi: 10.1137/060666457.  Google Scholar

[28]

R. D. Holt and A. P. Dobson, Chapter 2: Extending the principles of community ecology to address the epidemiology of host-pathogen systems, in "Disease Ecology: Community Structure and Pathogen Dynamics" (eds. S. K. Collinge and C. Ray),, Oxford Univ. Press, (2006), 2.   Google Scholar

[29]

R. D. Holt and J. Pickering, Infectious disease and species coexistence: A model of Lotka-Volterra form,, Am. Nat., 126 (1985), 196.  doi: 10.1086/284409.  Google Scholar

[30]

P. Hudson and J. Greenman, Competition mediated by parasites: Biological and theoretical progress,, Trends Ecol. Evol., 13 (1998), 387.   Google Scholar

[31]

P. Jagers, "Branching Processes with Biological Applications,'', Wiley Series in Probability and Mathematical Statistics Applied Probability and Statistics, (1975).   Google Scholar

[32]

S. T. Karlin and H. M. Taylor, "A First Course in Stochastic Processes,'', 2nd edition, (1975).   Google Scholar

[33]

J. M. Kiesecker and A. R. Blaustein, Pathogen reverses competition between larval amphibians,, Ecology, 80 (1999), 2442.   Google Scholar

[34]

P. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'', Applications of Mathematics (New York), 23 (1992).   Google Scholar

[35]

N. Lanchier and C. Neuhauser, A spatially explicit model for competition among specialists and generalists in a heterogeneous environment,, Ann. Appl. Probab., 16 (2006), 1385.  doi: 10.1214/105051606000000394.  Google Scholar

[36]

N. Lanchier and C. Neuhauser, Stochastic spatial models of host-pathogen and host-mutualist interactions. I,, Ann. Appl. Probab., 16 (2006), 448.  doi: 10.1214/105051605000000782.  Google Scholar

[37]

C. A. Manore, "Non-Spatial and Spatial Models for Multi-Host Pathogen Spread in Competing Species: Applications to Barley Yellow Dwarf Virus and Rinderpest,", Ph.D thesis, (2012).   Google Scholar

[38]

R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species,, Special issue on mathematics and the social and biological sciences, 29 (1975), 243.  doi: 10.1137/0129022.  Google Scholar

[39]

H. McCallum, N. Barlow and J. Hone, How should pathogen transmission be modelled?,, Trends Ecol. Evol., 16 (2001), 295.  doi: 10.1016/S0169-5347(01)02144-9.  Google Scholar

[40]

R. K. McCormack, "Multi-Host Multi-Patch Mathematical Epidemic Models for Disease Emergence with Applications to Hantavirus in Wild Rodents,", Ph.D thesis, (2006).   Google Scholar

[41]

R. K. McCormack and L. J. S. Allen, Stochastic SIS and SIR multihost epidemic models,, in, (2006), 775.   Google Scholar

[42]

R. K. McCormack and L. J. S. Allen, Disease emergence in multi-host epidemic models,, Math. Med. Biol., 24 (2007), 17.  doi: 10.1093/imammb/dql021.  Google Scholar

[43]

C. J. Mode, "Multitype Branching Processes. Theory and Applications,'', Modern Analytic and Computational Methods in Science and Mathematics, (1971).   Google Scholar

[44]

S. M. Moore, C. A. Manore, V. A. Bokil, E. T. Borer and P. R. Hosseini, Spatiotemporal model of barley and cereal yellow dwarf virus transmission dynamics with seasonality and plant competition,, Bull. Math. Biol., 73 (2011), 2707.   Google Scholar

[45]

C. Neuhauser and S. W. Pacala, An explicitly spatial version of the Lotka-Volterra model with interspecific competition,, Ann. Appl. Probab., 9 (1999), 1226.   Google Scholar

[46]

R. Norman, R. G. Bowers, M. Begon and P. J. Hudson, Persistence of tick-borne virus in the presence of multiple host species: Tick reservoirs and parasite mediated competition,, J. Theor. Biol., 200 (1999), 111.  doi: 10.1006/jtbi.1999.0982.  Google Scholar

[47]

J. M. Ortega, "Matrix Theory. A Second Course,", The University Series in Mathematics, (1987).   Google Scholar

[48]

S. Pénisson, "Conditional Limit Theorems for Multitype Branching Processes and Illustration in Epidemiological Risk Analysis,", Ph.D thesis, (2010).   Google Scholar

[49]

R. A. Saenz and H. W. Hethcote, Competing species models with an infectious disease,, Math. Biosci. Eng., 3 (2006), 219.   Google Scholar

[50]

D. M. Tompkins, R. A. H. Draycott and P. J. Hudson, Field evidence for apparent competition mediated via the shared parasites of two gamebird species,, Ecol. Lett., 3 (2000), 10.   Google Scholar

[51]

D. M. Tompkins, A. R. White and M. Boots, Ecological replacement of native red squirrels by invasive greys driven by disease,, Ecol. Lett., 6 (2003), 189.   Google Scholar

[52]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.   Google Scholar

[53]

P. van den Driessche and M. L. Zeeman, Disease induced oscillations between two competing species,, SIAM J. Appl. Dyn. Sys., 3 (2004), 601.   Google Scholar

[54]

E. Venturino, The effects of diseases on competing species,, Math. Biosci., 174 (2001), 111.  doi: 10.1016/S0025-5564(01)00081-5.  Google Scholar

[55]

P. Whittle, The outcome of a stochastic epidemic: A note on Bailey's paper,, Biometrika, 42 (1955), 116.  doi: 10.2307/2333427.  Google Scholar

[56]

E. C. Zeeman and M. L. Zeeman, From local to global behavior in competitive Lotka-Volterra systems,, Trans. Am. Math. Soc., 355 (2003), 713.  doi: 10.1090/S0002-9947-02-03103-3.  Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[4]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[5]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[6]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[7]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[8]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[9]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[10]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[11]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[12]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[13]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[14]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[15]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[16]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[17]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[18]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[19]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[20]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]