
Previous Article
A comparison of computational efficiencies of stochastic algorithms in terms of two infection models
 MBE Home
 This Issue
 Next Article
Stochastic models for competing species with a shared pathogen
1.  Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 794091042, United States 
2.  Department of Mathematics, Oregon State University, Corvallis, OR 973314605, United States 
References:
[1] 
E. Allen, "Modeling With Itô Stochastic Differential Equations,'' Mathematical Modelling: Theory and Applications, 22, Springer, Dordrecht, The Netherlands, 2007. 
[2] 
E. J. Allen, L. J. S. Allen, A. Arciniega and P. Greenwood, Construction of equivalent stochastic differential equation models, Stoch. Anal. Appl., 26 (2008), 274297. 
[3] 
L. J. S. Allen, "An Introduction to Mathematical Biology,'' Prentice Hall, Upper Saddle River, NJ, 2007. 
[4] 
L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,'' 2^{nd} edition, CRC Press, Boca Raton, FL, 2011. 
[5] 
L. J. S. Allen and N. Kirupaharan, Asymptotic dynamics of deterministic and stochastic epidemic models with multiple pathogens, Int. J. Numer. Anal. Modeling, 2 (2005), 329344. 
[6] 
R. M. Anderson and R. M. May, The invasion, persistence and spread of infectious diseases with animal and plant communities, Phil. Trans. R. Soc. Lond. B, 314 (1986), 533570. doi: 10.1098/rstb.1986.0072. 
[7] 
N. T. J. Bailey, "The Elements of Stochastic Processes with Applications to the Natural Sciences,'' Reprint of the 1964 original, Wiley Classics Library, A WileyInterscience Publication, John Wiley & Sons, Inc., New York, 1990. 
[8] 
M. S. Bartlett, The relevance of stochastic models for largescale epidemiological phenomena, Appl. Statist., 13 (1965), 28. 
[9] 
M. Begon, R. G. Bowers, N. Kadianakis and D. E. Hodgkinson, Disease and community structure: The importance of host selfregulation in a hosthostpathogen model, Am. Nat., 139 (1992), 11311150. doi: 10.1086/285379. 
[10] 
V. A. Bokil and M.R. Leung, An analysis of the coexistence of three competing species with a shared pathogen, Technical Report ORSTMATH1102, Oregon State Univ., 2011. Citation URL: http://ir.library.oregonstate.edu/xmlui/handle/1957/13738/. 
[11] 
E. T. Borer, P. R. Hosseini, E. W. Seabloom and A. P. Dobson, Pathogeninduced reversal of native dominance in a grassland community, Proc. Natl. Acad. Sci. U. S. A., 104 (2007), 54735478. 
[12] 
R. G. Bowers and J. Turner, Community structure and the interplay between interspecific infection and competition, J. Theor. Biol., 187 (1997), 95109. doi: 10.1006/jtbi.1997.0418. 
[13] 
S. K. Collinge and C. Ray, "Disease Ecology: Community Structure and Pathogen Dynamics," Oxford Univ. Press, Oxford, 2006. 
[14] 
A. Dobson, Population dynamics of pathogens with multiple host species, Am. Nat., 164 (2004), S64S78. doi: 10.1086/424681. 
[15] 
R. Durrett, Mutual invadability implies coexistence in spatial models, Mem. Am. Math. Soc., 156 (2002), viii+118 pp. 
[16] 
R. Durrett, Special invited paper: Coexistence in stochastic spatial models, Ann. Appl. Probab., 19 (2009), 477496. doi: 10.1214/08AAP590. 
[17] 
R. Durrett and C. Neuhauser, Coexistence results for some competition models, Ann. Appl. Probab., 7 (1997), 1045. 
[18] 
L. Gilbert, R. Norman, K. M. Laurenson, H. W. Reid and P. J. Hudson, Disease persistence and apparent competition in a threehost community: An empirical and analytical study of largescale, wild populations, J. Anim. Ecol., 70 (2001), 10531061. doi: 10.1046/j.00218790.2001.00558.x. 
[19] 
D. T. Gillespie, "Markov Processes: An Introduction for Physical Scientists,'' Academic Press, Inc., Boston, MA, 1992. 
[20] 
J. V. Greenman and P. J. Hudson, Infected coexistence instability with and without densitydependent regulation, J. Theor. Biol., 185 (1997), 345356. doi: 10.1006/jtbi.1996.0309. 
[21] 
M. Griffiths and D. Greenhalgh, The probability of extinction in a bovine respiratory syncytial virus epidemic model, Math. Biosci., 231 (2011), 144158. doi: 10.1016/j.mbs.2011.02.011. 
[22] 
B. A. Han, "The Effects of an Emerging Pathogen on Amphibian Host Behaviors and Interactions," Ph.D thesis, Oregon State Univ., Corvallis, OR, 2009. 
[23] 
L. Han, Z. Ma and T. Shi, An SIRS epidemic model of two competitive species, Math. Comput. Model., 37 (2003), 87108. doi: 10.1016/S08957177(03)800080. 
[24] 
L. Han and A. Pugliese, Epidemics in two competing species, Nonlinear Anal. Real World Appl., 10 (2009), 723744. doi: 10.1016/j.nonrwa.2007.11.005. 
[25] 
T. E. Harris, "The Theory of Branching Processes,'' Die Grundlehren der Mathematischen Wissenschaften, Bd. 119, SpringerVerlag, Berlin, PrenticeHall, Inc., Englewood Cliffs, NJ, 1963. 
[26] 
M. J. Hatcher, J. T. A. Dick and A. M. Dunn, How parasites affect interactions between competitors and predators, Ecol. Lett., 9 (2006), 12531271. doi: 10.1111/j.14610248.2006.00964.x. 
[27] 
D. J. Higham, Modeling and simulating chemical reactions, SIAM Rev., 50 (2008), 347368. doi: 10.1137/060666457. 
[28] 
R. D. Holt and A. P. Dobson, Chapter 2: Extending the principles of community ecology to address the epidemiology of hostpathogen systems, in "Disease Ecology: Community Structure and Pathogen Dynamics" (eds. S. K. Collinge and C. Ray), Oxford Univ. Press, Oxford, (2006), 227. 
[29] 
R. D. Holt and J. Pickering, Infectious disease and species coexistence: A model of LotkaVolterra form, Am. Nat., 126 (1985), 196211. doi: 10.1086/284409. 
[30] 
P. Hudson and J. Greenman, Competition mediated by parasites: Biological and theoretical progress, Trends Ecol. Evol., 13 (1998), 387390. 
[31] 
P. Jagers, "Branching Processes with Biological Applications,'' Wiley Series in Probability and Mathematical Statistics Applied Probability and Statistics, WileyInterscience [John Wiley & Sons], LondonNew YorkSydney, 1975. 
[32] 
S. T. Karlin and H. M. Taylor, "A First Course in Stochastic Processes,'' 2^{nd} edition, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New YorkLondon, 1975. 
[33] 
J. M. Kiesecker and A. R. Blaustein, Pathogen reverses competition between larval amphibians, Ecology, 80 (1999), 24422448. 
[34] 
P. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'' Applications of Mathematics (New York), 23, SpringerVerlag, Berlin, 1992. 
[35] 
N. Lanchier and C. Neuhauser, A spatially explicit model for competition among specialists and generalists in a heterogeneous environment, Ann. Appl. Probab., 16 (2006), 13851410. doi: 10.1214/105051606000000394. 
[36] 
N. Lanchier and C. Neuhauser, Stochastic spatial models of hostpathogen and hostmutualist interactions. I, Ann. Appl. Probab., 16 (2006), 448474. doi: 10.1214/105051605000000782. 
[37] 
C. A. Manore, "NonSpatial and Spatial Models for MultiHost Pathogen Spread in Competing Species: Applications to Barley Yellow Dwarf Virus and Rinderpest," Ph.D thesis, Oregon State Univ., Corvallis, OR, 2012. 
[38] 
R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species, Special issue on mathematics and the social and biological sciences, SIAM J. Appl. Math., 29 (1975), 243253. doi: 10.1137/0129022. 
[39] 
H. McCallum, N. Barlow and J. Hone, How should pathogen transmission be modelled?, Trends Ecol. Evol., 16 (2001), 295300. doi: 10.1016/S01695347(01)021449. 
[40] 
R. K. McCormack, "MultiHost MultiPatch Mathematical Epidemic Models for Disease Emergence with Applications to Hantavirus in Wild Rodents," Ph.D thesis, Texas Tech Univ., Lubbock, TX, 2006. 
[41] 
R. K. McCormack and L. J. S. Allen, Stochastic SIS and SIR multihost epidemic models, in "Differential & Difference Eqns. Appl.," Hindawi Publ. Corp., New York, (2006), 775785. 
[42] 
R. K. McCormack and L. J. S. Allen, Disease emergence in multihost epidemic models, Math. Med. Biol., 24 (2007), 1734. doi: 10.1093/imammb/dql021. 
[43] 
C. J. Mode, "Multitype Branching Processes. Theory and Applications,'' Modern Analytic and Computational Methods in Science and Mathematics, No. 34 , American Elsevier Publishing Co., Inc., New York, 1971. 
[44] 
S. M. Moore, C. A. Manore, V. A. Bokil, E. T. Borer and P. R. Hosseini, Spatiotemporal model of barley and cereal yellow dwarf virus transmission dynamics with seasonality and plant competition, Bull. Math. Biol., 73 (2011), 27072730. 
[45] 
C. Neuhauser and S. W. Pacala, An explicitly spatial version of the LotkaVolterra model with interspecific competition, Ann. Appl. Probab., 9 (1999), 12261259. 
[46] 
R. Norman, R. G. Bowers, M. Begon and P. J. Hudson, Persistence of tickborne virus in the presence of multiple host species: Tick reservoirs and parasite mediated competition, J. Theor. Biol., 200 (1999), 111118. doi: 10.1006/jtbi.1999.0982. 
[47] 
J. M. Ortega, "Matrix Theory. A Second Course," The University Series in Mathematics, Plenum Press, New York, 1987. 
[48] 
S. Pénisson, "Conditional Limit Theorems for Multitype Branching Processes and Illustration in Epidemiological Risk Analysis," Ph.D thesis, Institut für Mathematik der Unversität Potsdam, Germany, 2010. 
[49] 
R. A. Saenz and H. W. Hethcote, Competing species models with an infectious disease, Math. Biosci. Eng., 3 (2006), 219235. 
[50] 
D. M. Tompkins, R. A. H. Draycott and P. J. Hudson, Field evidence for apparent competition mediated via the shared parasites of two gamebird species, Ecol. Lett., 3 (2000), 1014. 
[51] 
D. M. Tompkins, A. R. White and M. Boots, Ecological replacement of native red squirrels by invasive greys driven by disease, Ecol. Lett., 6 (2003), 189196. 
[52] 
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 2948. 
[53] 
P. van den Driessche and M. L. Zeeman, Disease induced oscillations between two competing species, SIAM J. Appl. Dyn. Sys., 3 (2004), 601619. 
[54] 
E. Venturino, The effects of diseases on competing species, Math. Biosci., 174 (2001), 111131. doi: 10.1016/S00255564(01)000815. 
[55] 
P. Whittle, The outcome of a stochastic epidemic: A note on Bailey's paper, Biometrika, 42 (1955), 116122. doi: 10.2307/2333427. 
[56] 
E. C. Zeeman and M. L. Zeeman, From local to global behavior in competitive LotkaVolterra systems, Trans. Am. Math. Soc., 355 (2003), 713734. doi: 10.1090/S0002994702031033. 
show all references
References:
[1] 
E. Allen, "Modeling With Itô Stochastic Differential Equations,'' Mathematical Modelling: Theory and Applications, 22, Springer, Dordrecht, The Netherlands, 2007. 
[2] 
E. J. Allen, L. J. S. Allen, A. Arciniega and P. Greenwood, Construction of equivalent stochastic differential equation models, Stoch. Anal. Appl., 26 (2008), 274297. 
[3] 
L. J. S. Allen, "An Introduction to Mathematical Biology,'' Prentice Hall, Upper Saddle River, NJ, 2007. 
[4] 
L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,'' 2^{nd} edition, CRC Press, Boca Raton, FL, 2011. 
[5] 
L. J. S. Allen and N. Kirupaharan, Asymptotic dynamics of deterministic and stochastic epidemic models with multiple pathogens, Int. J. Numer. Anal. Modeling, 2 (2005), 329344. 
[6] 
R. M. Anderson and R. M. May, The invasion, persistence and spread of infectious diseases with animal and plant communities, Phil. Trans. R. Soc. Lond. B, 314 (1986), 533570. doi: 10.1098/rstb.1986.0072. 
[7] 
N. T. J. Bailey, "The Elements of Stochastic Processes with Applications to the Natural Sciences,'' Reprint of the 1964 original, Wiley Classics Library, A WileyInterscience Publication, John Wiley & Sons, Inc., New York, 1990. 
[8] 
M. S. Bartlett, The relevance of stochastic models for largescale epidemiological phenomena, Appl. Statist., 13 (1965), 28. 
[9] 
M. Begon, R. G. Bowers, N. Kadianakis and D. E. Hodgkinson, Disease and community structure: The importance of host selfregulation in a hosthostpathogen model, Am. Nat., 139 (1992), 11311150. doi: 10.1086/285379. 
[10] 
V. A. Bokil and M.R. Leung, An analysis of the coexistence of three competing species with a shared pathogen, Technical Report ORSTMATH1102, Oregon State Univ., 2011. Citation URL: http://ir.library.oregonstate.edu/xmlui/handle/1957/13738/. 
[11] 
E. T. Borer, P. R. Hosseini, E. W. Seabloom and A. P. Dobson, Pathogeninduced reversal of native dominance in a grassland community, Proc. Natl. Acad. Sci. U. S. A., 104 (2007), 54735478. 
[12] 
R. G. Bowers and J. Turner, Community structure and the interplay between interspecific infection and competition, J. Theor. Biol., 187 (1997), 95109. doi: 10.1006/jtbi.1997.0418. 
[13] 
S. K. Collinge and C. Ray, "Disease Ecology: Community Structure and Pathogen Dynamics," Oxford Univ. Press, Oxford, 2006. 
[14] 
A. Dobson, Population dynamics of pathogens with multiple host species, Am. Nat., 164 (2004), S64S78. doi: 10.1086/424681. 
[15] 
R. Durrett, Mutual invadability implies coexistence in spatial models, Mem. Am. Math. Soc., 156 (2002), viii+118 pp. 
[16] 
R. Durrett, Special invited paper: Coexistence in stochastic spatial models, Ann. Appl. Probab., 19 (2009), 477496. doi: 10.1214/08AAP590. 
[17] 
R. Durrett and C. Neuhauser, Coexistence results for some competition models, Ann. Appl. Probab., 7 (1997), 1045. 
[18] 
L. Gilbert, R. Norman, K. M. Laurenson, H. W. Reid and P. J. Hudson, Disease persistence and apparent competition in a threehost community: An empirical and analytical study of largescale, wild populations, J. Anim. Ecol., 70 (2001), 10531061. doi: 10.1046/j.00218790.2001.00558.x. 
[19] 
D. T. Gillespie, "Markov Processes: An Introduction for Physical Scientists,'' Academic Press, Inc., Boston, MA, 1992. 
[20] 
J. V. Greenman and P. J. Hudson, Infected coexistence instability with and without densitydependent regulation, J. Theor. Biol., 185 (1997), 345356. doi: 10.1006/jtbi.1996.0309. 
[21] 
M. Griffiths and D. Greenhalgh, The probability of extinction in a bovine respiratory syncytial virus epidemic model, Math. Biosci., 231 (2011), 144158. doi: 10.1016/j.mbs.2011.02.011. 
[22] 
B. A. Han, "The Effects of an Emerging Pathogen on Amphibian Host Behaviors and Interactions," Ph.D thesis, Oregon State Univ., Corvallis, OR, 2009. 
[23] 
L. Han, Z. Ma and T. Shi, An SIRS epidemic model of two competitive species, Math. Comput. Model., 37 (2003), 87108. doi: 10.1016/S08957177(03)800080. 
[24] 
L. Han and A. Pugliese, Epidemics in two competing species, Nonlinear Anal. Real World Appl., 10 (2009), 723744. doi: 10.1016/j.nonrwa.2007.11.005. 
[25] 
T. E. Harris, "The Theory of Branching Processes,'' Die Grundlehren der Mathematischen Wissenschaften, Bd. 119, SpringerVerlag, Berlin, PrenticeHall, Inc., Englewood Cliffs, NJ, 1963. 
[26] 
M. J. Hatcher, J. T. A. Dick and A. M. Dunn, How parasites affect interactions between competitors and predators, Ecol. Lett., 9 (2006), 12531271. doi: 10.1111/j.14610248.2006.00964.x. 
[27] 
D. J. Higham, Modeling and simulating chemical reactions, SIAM Rev., 50 (2008), 347368. doi: 10.1137/060666457. 
[28] 
R. D. Holt and A. P. Dobson, Chapter 2: Extending the principles of community ecology to address the epidemiology of hostpathogen systems, in "Disease Ecology: Community Structure and Pathogen Dynamics" (eds. S. K. Collinge and C. Ray), Oxford Univ. Press, Oxford, (2006), 227. 
[29] 
R. D. Holt and J. Pickering, Infectious disease and species coexistence: A model of LotkaVolterra form, Am. Nat., 126 (1985), 196211. doi: 10.1086/284409. 
[30] 
P. Hudson and J. Greenman, Competition mediated by parasites: Biological and theoretical progress, Trends Ecol. Evol., 13 (1998), 387390. 
[31] 
P. Jagers, "Branching Processes with Biological Applications,'' Wiley Series in Probability and Mathematical Statistics Applied Probability and Statistics, WileyInterscience [John Wiley & Sons], LondonNew YorkSydney, 1975. 
[32] 
S. T. Karlin and H. M. Taylor, "A First Course in Stochastic Processes,'' 2^{nd} edition, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New YorkLondon, 1975. 
[33] 
J. M. Kiesecker and A. R. Blaustein, Pathogen reverses competition between larval amphibians, Ecology, 80 (1999), 24422448. 
[34] 
P. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'' Applications of Mathematics (New York), 23, SpringerVerlag, Berlin, 1992. 
[35] 
N. Lanchier and C. Neuhauser, A spatially explicit model for competition among specialists and generalists in a heterogeneous environment, Ann. Appl. Probab., 16 (2006), 13851410. doi: 10.1214/105051606000000394. 
[36] 
N. Lanchier and C. Neuhauser, Stochastic spatial models of hostpathogen and hostmutualist interactions. I, Ann. Appl. Probab., 16 (2006), 448474. doi: 10.1214/105051605000000782. 
[37] 
C. A. Manore, "NonSpatial and Spatial Models for MultiHost Pathogen Spread in Competing Species: Applications to Barley Yellow Dwarf Virus and Rinderpest," Ph.D thesis, Oregon State Univ., Corvallis, OR, 2012. 
[38] 
R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species, Special issue on mathematics and the social and biological sciences, SIAM J. Appl. Math., 29 (1975), 243253. doi: 10.1137/0129022. 
[39] 
H. McCallum, N. Barlow and J. Hone, How should pathogen transmission be modelled?, Trends Ecol. Evol., 16 (2001), 295300. doi: 10.1016/S01695347(01)021449. 
[40] 
R. K. McCormack, "MultiHost MultiPatch Mathematical Epidemic Models for Disease Emergence with Applications to Hantavirus in Wild Rodents," Ph.D thesis, Texas Tech Univ., Lubbock, TX, 2006. 
[41] 
R. K. McCormack and L. J. S. Allen, Stochastic SIS and SIR multihost epidemic models, in "Differential & Difference Eqns. Appl.," Hindawi Publ. Corp., New York, (2006), 775785. 
[42] 
R. K. McCormack and L. J. S. Allen, Disease emergence in multihost epidemic models, Math. Med. Biol., 24 (2007), 1734. doi: 10.1093/imammb/dql021. 
[43] 
C. J. Mode, "Multitype Branching Processes. Theory and Applications,'' Modern Analytic and Computational Methods in Science and Mathematics, No. 34 , American Elsevier Publishing Co., Inc., New York, 1971. 
[44] 
S. M. Moore, C. A. Manore, V. A. Bokil, E. T. Borer and P. R. Hosseini, Spatiotemporal model of barley and cereal yellow dwarf virus transmission dynamics with seasonality and plant competition, Bull. Math. Biol., 73 (2011), 27072730. 
[45] 
C. Neuhauser and S. W. Pacala, An explicitly spatial version of the LotkaVolterra model with interspecific competition, Ann. Appl. Probab., 9 (1999), 12261259. 
[46] 
R. Norman, R. G. Bowers, M. Begon and P. J. Hudson, Persistence of tickborne virus in the presence of multiple host species: Tick reservoirs and parasite mediated competition, J. Theor. Biol., 200 (1999), 111118. doi: 10.1006/jtbi.1999.0982. 
[47] 
J. M. Ortega, "Matrix Theory. A Second Course," The University Series in Mathematics, Plenum Press, New York, 1987. 
[48] 
S. Pénisson, "Conditional Limit Theorems for Multitype Branching Processes and Illustration in Epidemiological Risk Analysis," Ph.D thesis, Institut für Mathematik der Unversität Potsdam, Germany, 2010. 
[49] 
R. A. Saenz and H. W. Hethcote, Competing species models with an infectious disease, Math. Biosci. Eng., 3 (2006), 219235. 
[50] 
D. M. Tompkins, R. A. H. Draycott and P. J. Hudson, Field evidence for apparent competition mediated via the shared parasites of two gamebird species, Ecol. Lett., 3 (2000), 1014. 
[51] 
D. M. Tompkins, A. R. White and M. Boots, Ecological replacement of native red squirrels by invasive greys driven by disease, Ecol. Lett., 6 (2003), 189196. 
[52] 
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 2948. 
[53] 
P. van den Driessche and M. L. Zeeman, Disease induced oscillations between two competing species, SIAM J. Appl. Dyn. Sys., 3 (2004), 601619. 
[54] 
E. Venturino, The effects of diseases on competing species, Math. Biosci., 174 (2001), 111131. doi: 10.1016/S00255564(01)000815. 
[55] 
P. Whittle, The outcome of a stochastic epidemic: A note on Bailey's paper, Biometrika, 42 (1955), 116122. doi: 10.2307/2333427. 
[56] 
E. C. Zeeman and M. L. Zeeman, From local to global behavior in competitive LotkaVolterra systems, Trans. Am. Math. Soc., 355 (2003), 713734. doi: 10.1090/S0002994702031033. 
[1] 
Vladimir Kazakov. Sampling  reconstruction procedure with jitter of markov continuous processes formed by stochastic differential equations of the first order. Conference Publications, 2009, 2009 (Special) : 433441. doi: 10.3934/proc.2009.2009.433 
[2] 
Felix X.F. Ye, Yue Wang, Hong Qian. Stochastic dynamics: Markov chains and random transformations. Discrete and Continuous Dynamical Systems  B, 2016, 21 (7) : 23372361. doi: 10.3934/dcdsb.2016050 
[3] 
Thomas Kruse, Mikhail Urusov. Approximating exit times of continuous Markov processes. Discrete and Continuous Dynamical Systems  B, 2020, 25 (9) : 36313650. doi: 10.3934/dcdsb.2020076 
[4] 
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete and Continuous Dynamical Systems  B, 2021, 26 (9) : 48874905. doi: 10.3934/dcdsb.2020317 
[5] 
Artur Stephan, Holger Stephan. Memory equations as reduced Markov processes. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 21332155. doi: 10.3934/dcds.2019089 
[6] 
H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences & Engineering, 2012, 9 (1) : 125. doi: 10.3934/mbe.2012.9.1 
[7] 
Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 10051023. doi: 10.3934/dcds.2009.24.1005 
[8] 
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discretetime semiMarkov processes. Discrete and Continuous Dynamical Systems  B, 2021, 26 (3) : 14991529. doi: 10.3934/dcdsb.2020170 
[9] 
Demetris Hadjiloucas. Stochastic matrixvalued cocycles and nonhomogeneous Markov chains. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 731738. doi: 10.3934/dcds.2007.17.731 
[10] 
Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete and Continuous Dynamical Systems  B, 2021, 26 (12) : 61736184. doi: 10.3934/dcdsb.2021012 
[11] 
Lakhdar Aggoun, Lakdere Benkherouf. A Markov modulated continuoustime capturerecapture population estimation model. Discrete and Continuous Dynamical Systems  B, 2005, 5 (4) : 10571075. doi: 10.3934/dcdsb.2005.5.1057 
[12] 
J. C. Dallon, Lynnae C. Despain, Emily J. Evans, Christopher P. Grant. A continuoustime stochastic model of cell motion in the presence of a chemoattractant. Discrete and Continuous Dynamical Systems  B, 2020, 25 (12) : 48394852. doi: 10.3934/dcdsb.2020129 
[13] 
A. Settati, A. Lahrouz, Mohamed El Fatini, A. El Haitami, M. El Jarroudi, M. Erriani. A Markovian switching diffusion for an SIS model incorporating Lévy processes. Discrete and Continuous Dynamical Systems  B, 2022 doi: 10.3934/dcdsb.2022072 
[14] 
Michael C. Fu, Bingqing Li, Rongwen Wu, Tianqi Zhang. Option pricing under a discretetime Markov switching stochastic volatility with cojump model. Frontiers of Mathematical Finance, 2022, 1 (1) : 137160. doi: 10.3934/fmf.2021005 
[15] 
Yayun Zheng, Xu Sun. Governing equations for Probability densities of stochastic differential equations with discrete time delays. Discrete and Continuous Dynamical Systems  B, 2017, 22 (9) : 36153628. doi: 10.3934/dcdsb.2017182 
[16] 
Francisco de la Hoz, Anna Doubova, Fernando Vadillo. Persistencetime estimation for some stochastic SIS epidemic models. Discrete and Continuous Dynamical Systems  B, 2015, 20 (9) : 29332947. doi: 10.3934/dcdsb.2015.20.2933 
[17] 
Yulan Lu, Minghui Song, Mingzhu Liu. Convergence rate and stability of the splitstep theta method for stochastic differential equations with piecewise continuous arguments. Discrete and Continuous Dynamical Systems  B, 2019, 24 (2) : 695717. doi: 10.3934/dcdsb.2018203 
[18] 
David Lipshutz. Exit time asymptotics for small noise stochastic delay differential equations. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 30993138. doi: 10.3934/dcds.2018135 
[19] 
Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete and Continuous Dynamical Systems  B, 2019, 24 (6) : 27192743. doi: 10.3934/dcdsb.2018272 
[20] 
Juan C. Cortés, Sandra E. DelgadilloAlemán, Roberto A. KúCarrillo, Rafael J. Villanueva. Probabilistic analysis of a class of impulsive linear random differential equations forced by stochastic processes admitting KarhunenLoève expansions. Discrete and Continuous Dynamical Systems  S, 2022 doi: 10.3934/dcdss.2022079 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]