-
Previous Article
Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study
- MBE Home
- This Issue
-
Next Article
A comparison of computational efficiencies of stochastic algorithms in terms of two infection models
Fast two dimensional to three dimensional registration of fluoroscopy and CT-scans using Octrees on segmentation maps
1. | ECE Department, UCSB, Santa Barbara, CA 93106, United States |
2. | Department of Computer Science and Department of Mechanical Engineering, University of California at Santa Barbara, CA 93106-5070 |
References:
[1] |
L. Bertelli, S. Chandrasekaran, F. Gibou and B. Manjunath, On the length and area regularization for multiphase level set segmentation, International Journal on Computer Vision, 90 (2010), 267-282.
doi: 10.1007/s11263-010-0348-4. |
[2] |
T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing, 10 (2001), 266-277.
doi: 10.1109/83.902291. |
[3] |
F. Gibou and R. Fedkiw, Fast hybrid k-means level set algorithm for segmentation, Technical report, Stanford, 2002, Also in proceeding of the $4^{th}$ International Conf. on Stat., Math. and Related Fields, Honolulu, 2005. |
[4] |
M. Levoy and P. Hanrahan, Light field rendering, Computer Graphics SIGGRAPH, 30 (1996), 31-42. |
[5] |
C. Min, Local level set method in high dimension and codimension, J. Comput. Phys., 200 (2004), 368-382.
doi: 10.1016/j.jcp.2004.04.019. |
[6] |
C. Min and F. Gibou, A second order accurate level set method on non-graded adaptive Cartesian grids, J. Comput. Phys., 225 (2007), 300-321.
doi: 10.1016/j.jcp.2006.11.034. |
[7] |
S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2. |
[8] |
D. Russakoff, T. Rohlfing and C. R. Maurer, Fast intensity-based 2d-3d image registration of clinical data using light fields, IEEE International Conference on Computer Vision, 1 (2003), 416-422. |
[9] |
H. Samet, "The Design and Analysis of Spatial Data Structures," Addison-Wesley, New York, 1989. |
[10] |
H. Samet, "Applications of Spatial Data Structures: Computer Graphics, Image Processing and GIS," Addison-Wesley, New York, 1990. |
[11] |
J. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci. U.S.A., 93 (1996), 1591-1595.
doi: 10.1073/pnas.93.4.1591. |
[12] |
B. Smits, Efficient bounding box intersection, Ray Tracing News, 15 (2002). |
[13] |
J. Strain, Tree methods for moving interfaces, J. Comput. Phys., 151 (1999), 616-648.
doi: 10.1006/jcph.1999.6205. |
[14] |
J. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Trans. on Automatic Control, 40 (1995), 1528-1538.
doi: 10.1109/9.412624. |
[15] |
L. A. Vese and T. F. Chan, A multiphase level set framework for image segmentation using the mumford and shah model, International Journal of Computer Vision, (2002), 271-293.
doi: 10.1023/A:1020874308076. |
[16] |
A. Williams, S. Barrus, R. K. Morley and P. Shirley, An efficient and robust ray-box intersection algorithm, International Conference on Computer Graphics and Interactive Techniques, 2005. |
[17] |
L. Zollei, E. Grimson, A. Norbash and W. Wells, 2D-3D rigid registration of x-ray fluoroscopy and ct images using mutual information and sparsely sampled histogram estimators, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2 (2001), 696-673. |
show all references
References:
[1] |
L. Bertelli, S. Chandrasekaran, F. Gibou and B. Manjunath, On the length and area regularization for multiphase level set segmentation, International Journal on Computer Vision, 90 (2010), 267-282.
doi: 10.1007/s11263-010-0348-4. |
[2] |
T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing, 10 (2001), 266-277.
doi: 10.1109/83.902291. |
[3] |
F. Gibou and R. Fedkiw, Fast hybrid k-means level set algorithm for segmentation, Technical report, Stanford, 2002, Also in proceeding of the $4^{th}$ International Conf. on Stat., Math. and Related Fields, Honolulu, 2005. |
[4] |
M. Levoy and P. Hanrahan, Light field rendering, Computer Graphics SIGGRAPH, 30 (1996), 31-42. |
[5] |
C. Min, Local level set method in high dimension and codimension, J. Comput. Phys., 200 (2004), 368-382.
doi: 10.1016/j.jcp.2004.04.019. |
[6] |
C. Min and F. Gibou, A second order accurate level set method on non-graded adaptive Cartesian grids, J. Comput. Phys., 225 (2007), 300-321.
doi: 10.1016/j.jcp.2006.11.034. |
[7] |
S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2. |
[8] |
D. Russakoff, T. Rohlfing and C. R. Maurer, Fast intensity-based 2d-3d image registration of clinical data using light fields, IEEE International Conference on Computer Vision, 1 (2003), 416-422. |
[9] |
H. Samet, "The Design and Analysis of Spatial Data Structures," Addison-Wesley, New York, 1989. |
[10] |
H. Samet, "Applications of Spatial Data Structures: Computer Graphics, Image Processing and GIS," Addison-Wesley, New York, 1990. |
[11] |
J. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci. U.S.A., 93 (1996), 1591-1595.
doi: 10.1073/pnas.93.4.1591. |
[12] |
B. Smits, Efficient bounding box intersection, Ray Tracing News, 15 (2002). |
[13] |
J. Strain, Tree methods for moving interfaces, J. Comput. Phys., 151 (1999), 616-648.
doi: 10.1006/jcph.1999.6205. |
[14] |
J. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Trans. on Automatic Control, 40 (1995), 1528-1538.
doi: 10.1109/9.412624. |
[15] |
L. A. Vese and T. F. Chan, A multiphase level set framework for image segmentation using the mumford and shah model, International Journal of Computer Vision, (2002), 271-293.
doi: 10.1023/A:1020874308076. |
[16] |
A. Williams, S. Barrus, R. K. Morley and P. Shirley, An efficient and robust ray-box intersection algorithm, International Conference on Computer Graphics and Interactive Techniques, 2005. |
[17] |
L. Zollei, E. Grimson, A. Norbash and W. Wells, 2D-3D rigid registration of x-ray fluoroscopy and ct images using mutual information and sparsely sampled histogram estimators, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2 (2001), 696-673. |
[1] |
Ismet Cinar, Ozgur Ege, Ismet Karaca. The digital smash product. Electronic Research Archive, 2020, 28 (1) : 459-469. doi: 10.3934/era.2020026 |
[2] |
Xiaoxue Gong, Ying Xu, Vinay Mahadeo, Tulin Kaman, Johan Larsson, James Glimm. Mesh convergence for turbulent combustion. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4383-4402. doi: 10.3934/dcds.2016.36.4383 |
[3] |
Vincent Ducrot, Pascal Frey, Alexandra Claisse. Levelsets and anisotropic mesh adaptation. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 165-183. doi: 10.3934/dcds.2009.23.165 |
[4] |
Birol Yüceoǧlu, ş. ilker Birbil, özgür Gürbüz. Dispersion with connectivity in wireless mesh networks. Journal of Industrial and Management Optimization, 2018, 14 (2) : 759-784. doi: 10.3934/jimo.2017074 |
[5] |
Jianjun Zhang, Yunyi Hu, James G. Nagy. A scaled gradient method for digital tomographic image reconstruction. Inverse Problems and Imaging, 2018, 12 (1) : 239-259. doi: 10.3934/ipi.2018010 |
[6] |
Lizhong Peng, Shujun Dang, Bojin Zhuang. Localization operator and digital communication capacity of channel. Communications on Pure and Applied Analysis, 2007, 6 (3) : 819-827. doi: 10.3934/cpaa.2007.6.819 |
[7] |
Rongjie Lai, Jiang Liang, Hong-Kai Zhao. A local mesh method for solving PDEs on point clouds. Inverse Problems and Imaging, 2013, 7 (3) : 737-755. doi: 10.3934/ipi.2013.7.737 |
[8] |
Nahid Banihashemi, C. Yalçın Kaya. Inexact restoration and adaptive mesh refinement for optimal control. Journal of Industrial and Management Optimization, 2014, 10 (2) : 521-542. doi: 10.3934/jimo.2014.10.521 |
[9] |
Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1 |
[10] |
Michael Baur, Marco Gaertler, Robert Görke, Marcus Krug, Dorothea Wagner. Augmenting $k$-core generation with preferential attachment. Networks and Heterogeneous Media, 2008, 3 (2) : 277-294. doi: 10.3934/nhm.2008.3.277 |
[11] |
Johannes Giannoulis. Transport and generation of macroscopically modulated waves in diatomic chains. Conference Publications, 2011, 2011 (Special) : 485-494. doi: 10.3934/proc.2011.2011.485 |
[12] |
Hiroyuki Torikai. Basic spike-train properties of a digital spiking neuron. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 183-198. doi: 10.3934/dcdsb.2008.9.183 |
[13] |
Yi Zhang, Xiao-Li Ma. Research on image digital watermarking optimization algorithm under virtual reality technology. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1427-1440. doi: 10.3934/dcdss.2019098 |
[14] |
Ahmad Jazlan, Umair Zulfiqar, Victor Sreeram, Deepak Kumar, Roberto Togneri, Hasan Firdaus Mohd Zaki. Frequency interval model reduction of complex fir digital filters. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 319-326. doi: 10.3934/naco.2019021 |
[15] |
Hiroaki Uchida, Yuya Oishi, Toshimichi Saito. A simple digital spiking neural network: Synchronization and spike-train approximation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1479-1494. doi: 10.3934/dcdss.2020374 |
[16] |
Yan-Xin Chai, Steven Ji-Fan Ren, Jian-Qiang Zhang. Managing piracy: Dual-channel strategy for digital contents. Journal of Industrial and Management Optimization, 2022, 18 (4) : 3001-3027. doi: 10.3934/jimo.2021100 |
[17] |
Anita Mayo. Accurate two and three dimensional interpolation for particle mesh calculations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1205-1228. doi: 10.3934/dcdsb.2012.17.1205 |
[18] |
Vyacheslav K. Isaev, Vyacheslav V. Zolotukhin. Introduction to the theory of splines with an optimal mesh. Linear Chebyshev splines and applications. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 471-489. doi: 10.3934/naco.2013.3.471 |
[19] |
Zheng-Ru Zhang, Tao Tang. An adaptive mesh redistribution algorithm for convection-dominated problems. Communications on Pure and Applied Analysis, 2002, 1 (3) : 341-357. doi: 10.3934/cpaa.2002.1.341 |
[20] |
Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]