• Previous Article
    Parameter estimation and uncertainty quantification for an epidemic model
  • MBE Home
  • This Issue
  • Next Article
    Fast two dimensional to three dimensional registration of fluoroscopy and CT-scans using Octrees on segmentation maps
2012, 9(3): 539-552. doi: 10.3934/mbe.2012.9.539

Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study

1. 

Department of Mathematics and Applications, University of Naples Federico II, via Cintia, I-80126 Naples, Italy

Received  April 2011 Revised  March 2012 Published  July 2012

When a newly emerging human infectious disease spreads through a host population, it may be that public health authorities must begin facing the outbreaks and planning an intervention campaign when not all intervention tools are readily available. In such cases, the problem of finding optimal intervention strategies to minimize both the disease burden and the intervention costs may be addressed by considering multiple intervention regimes. In this paper, we consider the scenario in which authorities may rely initially only on non-pharmaceutical interventions at the beginning of the campaign, knowing that a vaccine will later be available, at an exogenous and known switching time. We use a two-stage optimal control problem over a finite time horizon to analyze the optimal intervention strategies during the whole campaign, and to assess the effects of the new intervention tool on the preceding stage of the campaign. We obtain the optimality systems of two connected optimal control problems, and show the solution profiles through numerical simulations.
Citation: Bruno Buonomo, Eleonora Messina. Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study. Mathematical Biosciences & Engineering, 2012, 9 (3) : 539-552. doi: 10.3934/mbe.2012.9.539
References:
[1]

S. Anita, V. Arnăutu and V. Capasso, "An Introduction to Optimal Control Problems in Life Sciences and Economics,", Modeling and Simulation in Science, (2011).   Google Scholar

[2]

E. Asano, L. J. Gross, S. Lenhart and L. A. Real, Optimal control of vaccine distribution in a rabies metapopulation model,, Math. Biosci. Engineering, 5 (2008), 219.   Google Scholar

[3]

H. Behncke, Optimal control of deterministic epidemics,, Optimal Control Appl. Methods, 21 (2000), 269.  doi: 10.1002/oca.678.  Google Scholar

[4]

K. W. Blayneh, A. B. Gumel, S. Lenhart and T. Clayton, Backward bifurcation and optimal control in transmission dynamics of West Nile Virus,, Bull. Math. Biol., 72 (2010), 1006.  doi: 10.1007/s11538-009-9480-0.  Google Scholar

[5]

R. Boucekkine, J. B. Krawczyk and T. Vall\'ee, Environmental quality versus economic performance: A dynamic game approach,, Optimal Control Appl. Methods, 32 (2011), 29.  doi: 10.1002/oca.927.  Google Scholar

[6]

R. Boucekkine, C. Saglam and T. Vall\'ee, Technology adoption under embodiment: A two-stage optimal control approach,, Macroeconomic Dynamics, 8 (2004), 250.   Google Scholar

[7]

R. Bulirsch, E. Nerz, H. J. Pesch and O. von Stryk, Combining direct and indirect methods in optimal control: Range maximization of a hang glider,, in, 111 (1993), 273.   Google Scholar

[8]

B. Buonomo, A simple analysis of vaccination strategies for rubella,, Math. Biosci. Engineering, 8 (2011), 677.   Google Scholar

[9]

B. Buonomo, On the optimal vaccination strategies for horizontally and vertically transmitted infectious diseases,, J. Biol. Sys., 19 (2011), 263.  doi: 10.1142/S0218339011003853.  Google Scholar

[10]

C. W. Clark, "Mathematical Bioeconomics: The Optimal Management of Renewable Resources,", Third edition, (2010).   Google Scholar

[11]

A. d'Onofrio and P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious disease,, J. Theor. Biol., 256 (2009), 473.  doi: 10.1016/j.jtbi.2008.10.005.  Google Scholar

[12]

Z. Feng, Y. Yang, D. Xu, P. Zhang, M. M. Mc Cauley and J. W. Glasser, Timely identification of optimal control strategies for emerging infectious diseases,, J. Theor. Biol., 259 (2009), 165.  doi: 10.1016/j.jtbi.2009.03.006.  Google Scholar

[13]

K. R. Fister, S. Lenhart and J. S. McNally, Optimizing chemotherapy in an HIV model,, Electron. J. Differential Equations, 1998 ().   Google Scholar

[14]

K. R. Fister and J. C. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy,, SIAM J. Appl. Math., 60 (2000), 1059.  doi: 10.1137/S0036139998338509.  Google Scholar

[15]

K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954.  doi: 10.1137/S0036139902413489.  Google Scholar

[16]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control,", Applications of Mathematics, (1975).   Google Scholar

[17]

H. Gaff and E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models,, Math. Biosci. Engineering, 6 (2009), 469.   Google Scholar

[18]

D. Grass, J. P. Caulkins, G. Feichtinger, G. Tragler and D. A. Behrens, "Optimal Control of Nonlinear Processes. With Applications in Drugs, Corruption, and Terror,", Springer-Verlag, (2008).   Google Scholar

[19]

A. Huhtala, A post-consumer waste management model for determining optimal levels of recycling and landfilling,, Environ. Resour. Econom., 10 (1997), 301.  doi: 10.1023/A:1026475208718.  Google Scholar

[20]

Italian Ministry of Health, "Nuova Influenza." Available from:, , ().   Google Scholar

[21]

Italian Ministry of Health, "FluNews," no. 28, May 3-9, 2010 (18th week)., Available from: , ().   Google Scholar

[22]

H. R. Joshi, Optimal control of an HIV immunology model,, Optimal Control Appl. Methods, 23 (2002), 199.  doi: 10.1002/oca.710.  Google Scholar

[23]

E. Jung, S. Iwami, Y. Takeuchi and T.-C. Jo, Optimal control strategy for prevention of avian influenza pandemic,, J. Theor. Biol., 260 (2009), 220.  doi: 10.1016/j.jtbi.2009.05.031.  Google Scholar

[24]

E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model,, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 473.   Google Scholar

[25]

S. Lee, G. Chowell and C. Castillo-Chavez, Optimal control for pandemic influenza: The role of limited antiviraltreatment and isolation,, J. Theor. Biol., 265 (2010), 136.  doi: 10.1016/j.jtbi.2010.04.003.  Google Scholar

[26]

S. Lee, R. Morales and C. Castillo-Chavez, A note on the use of influenza vaccination strategies when supply is limited,, Math. Biosci. Engineering, 8 (2011), 171.   Google Scholar

[27]

S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007).   Google Scholar

[28]

F. Lin, K. Muthuraman and M. Lawley, An optimal control theory approach to non-pharmaceutical interventions,, BMC Infect. Dis., 10 (2010), 32.  doi: 10.1186/1471-2334-10-32.  Google Scholar

[29]

, MATLAB© , "Matlab Release 12,", The Mathworks Inc., (2000).   Google Scholar

[30]

R. L. Miller Neilan, E. Schaefer, H. Gaff, K. R. Fister and S. Lenhart, Modeling optimal intervention strategies for cholera,, Bull. Math. Biol., 72 (2010), 2004.  doi: 10.1007/s11538-010-9521-8.  Google Scholar

[31]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Interscience Publishers John Wiley & Sons, (1962).   Google Scholar

[32]

O. Prosper, O. Saucedo, D. Thompson, G. Torres-Garcia, X. Wang and C. Castillo-Chavez, Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza,, Math. Biosci. Engineering, 8 (2011), 141.   Google Scholar

[33]

R. J. Rossana, Delivery lags and buffer stocks in the theory of investment by the firm,, J. Econ. Dyn. Control, 9 (1985), 135.   Google Scholar

[34]

W. H. Schmidt, Numerical methods for optimal control problems with ODE or integral equations,, in, 3743 (2006), 255.   Google Scholar

[35]

K. Tomiyama, Two-stage optimal control problems and optimality conditions,, J. Econ. Dyn. Control, 9 (1985), 317.   Google Scholar

show all references

References:
[1]

S. Anita, V. Arnăutu and V. Capasso, "An Introduction to Optimal Control Problems in Life Sciences and Economics,", Modeling and Simulation in Science, (2011).   Google Scholar

[2]

E. Asano, L. J. Gross, S. Lenhart and L. A. Real, Optimal control of vaccine distribution in a rabies metapopulation model,, Math. Biosci. Engineering, 5 (2008), 219.   Google Scholar

[3]

H. Behncke, Optimal control of deterministic epidemics,, Optimal Control Appl. Methods, 21 (2000), 269.  doi: 10.1002/oca.678.  Google Scholar

[4]

K. W. Blayneh, A. B. Gumel, S. Lenhart and T. Clayton, Backward bifurcation and optimal control in transmission dynamics of West Nile Virus,, Bull. Math. Biol., 72 (2010), 1006.  doi: 10.1007/s11538-009-9480-0.  Google Scholar

[5]

R. Boucekkine, J. B. Krawczyk and T. Vall\'ee, Environmental quality versus economic performance: A dynamic game approach,, Optimal Control Appl. Methods, 32 (2011), 29.  doi: 10.1002/oca.927.  Google Scholar

[6]

R. Boucekkine, C. Saglam and T. Vall\'ee, Technology adoption under embodiment: A two-stage optimal control approach,, Macroeconomic Dynamics, 8 (2004), 250.   Google Scholar

[7]

R. Bulirsch, E. Nerz, H. J. Pesch and O. von Stryk, Combining direct and indirect methods in optimal control: Range maximization of a hang glider,, in, 111 (1993), 273.   Google Scholar

[8]

B. Buonomo, A simple analysis of vaccination strategies for rubella,, Math. Biosci. Engineering, 8 (2011), 677.   Google Scholar

[9]

B. Buonomo, On the optimal vaccination strategies for horizontally and vertically transmitted infectious diseases,, J. Biol. Sys., 19 (2011), 263.  doi: 10.1142/S0218339011003853.  Google Scholar

[10]

C. W. Clark, "Mathematical Bioeconomics: The Optimal Management of Renewable Resources,", Third edition, (2010).   Google Scholar

[11]

A. d'Onofrio and P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious disease,, J. Theor. Biol., 256 (2009), 473.  doi: 10.1016/j.jtbi.2008.10.005.  Google Scholar

[12]

Z. Feng, Y. Yang, D. Xu, P. Zhang, M. M. Mc Cauley and J. W. Glasser, Timely identification of optimal control strategies for emerging infectious diseases,, J. Theor. Biol., 259 (2009), 165.  doi: 10.1016/j.jtbi.2009.03.006.  Google Scholar

[13]

K. R. Fister, S. Lenhart and J. S. McNally, Optimizing chemotherapy in an HIV model,, Electron. J. Differential Equations, 1998 ().   Google Scholar

[14]

K. R. Fister and J. C. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy,, SIAM J. Appl. Math., 60 (2000), 1059.  doi: 10.1137/S0036139998338509.  Google Scholar

[15]

K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954.  doi: 10.1137/S0036139902413489.  Google Scholar

[16]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control,", Applications of Mathematics, (1975).   Google Scholar

[17]

H. Gaff and E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models,, Math. Biosci. Engineering, 6 (2009), 469.   Google Scholar

[18]

D. Grass, J. P. Caulkins, G. Feichtinger, G. Tragler and D. A. Behrens, "Optimal Control of Nonlinear Processes. With Applications in Drugs, Corruption, and Terror,", Springer-Verlag, (2008).   Google Scholar

[19]

A. Huhtala, A post-consumer waste management model for determining optimal levels of recycling and landfilling,, Environ. Resour. Econom., 10 (1997), 301.  doi: 10.1023/A:1026475208718.  Google Scholar

[20]

Italian Ministry of Health, "Nuova Influenza." Available from:, , ().   Google Scholar

[21]

Italian Ministry of Health, "FluNews," no. 28, May 3-9, 2010 (18th week)., Available from: , ().   Google Scholar

[22]

H. R. Joshi, Optimal control of an HIV immunology model,, Optimal Control Appl. Methods, 23 (2002), 199.  doi: 10.1002/oca.710.  Google Scholar

[23]

E. Jung, S. Iwami, Y. Takeuchi and T.-C. Jo, Optimal control strategy for prevention of avian influenza pandemic,, J. Theor. Biol., 260 (2009), 220.  doi: 10.1016/j.jtbi.2009.05.031.  Google Scholar

[24]

E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model,, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 473.   Google Scholar

[25]

S. Lee, G. Chowell and C. Castillo-Chavez, Optimal control for pandemic influenza: The role of limited antiviraltreatment and isolation,, J. Theor. Biol., 265 (2010), 136.  doi: 10.1016/j.jtbi.2010.04.003.  Google Scholar

[26]

S. Lee, R. Morales and C. Castillo-Chavez, A note on the use of influenza vaccination strategies when supply is limited,, Math. Biosci. Engineering, 8 (2011), 171.   Google Scholar

[27]

S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007).   Google Scholar

[28]

F. Lin, K. Muthuraman and M. Lawley, An optimal control theory approach to non-pharmaceutical interventions,, BMC Infect. Dis., 10 (2010), 32.  doi: 10.1186/1471-2334-10-32.  Google Scholar

[29]

, MATLAB© , "Matlab Release 12,", The Mathworks Inc., (2000).   Google Scholar

[30]

R. L. Miller Neilan, E. Schaefer, H. Gaff, K. R. Fister and S. Lenhart, Modeling optimal intervention strategies for cholera,, Bull. Math. Biol., 72 (2010), 2004.  doi: 10.1007/s11538-010-9521-8.  Google Scholar

[31]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Interscience Publishers John Wiley & Sons, (1962).   Google Scholar

[32]

O. Prosper, O. Saucedo, D. Thompson, G. Torres-Garcia, X. Wang and C. Castillo-Chavez, Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza,, Math. Biosci. Engineering, 8 (2011), 141.   Google Scholar

[33]

R. J. Rossana, Delivery lags and buffer stocks in the theory of investment by the firm,, J. Econ. Dyn. Control, 9 (1985), 135.   Google Scholar

[34]

W. H. Schmidt, Numerical methods for optimal control problems with ODE or integral equations,, in, 3743 (2006), 255.   Google Scholar

[35]

K. Tomiyama, Two-stage optimal control problems and optimality conditions,, J. Econ. Dyn. Control, 9 (1985), 317.   Google Scholar

[1]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[2]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[5]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[6]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[9]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[10]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[11]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[12]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[13]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[14]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[15]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[16]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[17]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[18]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[19]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[20]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]