• Previous Article
    Parameter estimation and uncertainty quantification for an epidemic model
  • MBE Home
  • This Issue
  • Next Article
    Fast two dimensional to three dimensional registration of fluoroscopy and CT-scans using Octrees on segmentation maps
2012, 9(3): 539-552. doi: 10.3934/mbe.2012.9.539

Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study

1. 

Department of Mathematics and Applications, University of Naples Federico II, via Cintia, I-80126 Naples, Italy

Received  April 2011 Revised  March 2012 Published  July 2012

When a newly emerging human infectious disease spreads through a host population, it may be that public health authorities must begin facing the outbreaks and planning an intervention campaign when not all intervention tools are readily available. In such cases, the problem of finding optimal intervention strategies to minimize both the disease burden and the intervention costs may be addressed by considering multiple intervention regimes. In this paper, we consider the scenario in which authorities may rely initially only on non-pharmaceutical interventions at the beginning of the campaign, knowing that a vaccine will later be available, at an exogenous and known switching time. We use a two-stage optimal control problem over a finite time horizon to analyze the optimal intervention strategies during the whole campaign, and to assess the effects of the new intervention tool on the preceding stage of the campaign. We obtain the optimality systems of two connected optimal control problems, and show the solution profiles through numerical simulations.
Citation: Bruno Buonomo, Eleonora Messina. Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study. Mathematical Biosciences & Engineering, 2012, 9 (3) : 539-552. doi: 10.3934/mbe.2012.9.539
References:
[1]

S. Anita, V. Arnăutu and V. Capasso, "An Introduction to Optimal Control Problems in Life Sciences and Economics,", Modeling and Simulation in Science, (2011).   Google Scholar

[2]

E. Asano, L. J. Gross, S. Lenhart and L. A. Real, Optimal control of vaccine distribution in a rabies metapopulation model,, Math. Biosci. Engineering, 5 (2008), 219.   Google Scholar

[3]

H. Behncke, Optimal control of deterministic epidemics,, Optimal Control Appl. Methods, 21 (2000), 269.  doi: 10.1002/oca.678.  Google Scholar

[4]

K. W. Blayneh, A. B. Gumel, S. Lenhart and T. Clayton, Backward bifurcation and optimal control in transmission dynamics of West Nile Virus,, Bull. Math. Biol., 72 (2010), 1006.  doi: 10.1007/s11538-009-9480-0.  Google Scholar

[5]

R. Boucekkine, J. B. Krawczyk and T. Vall\'ee, Environmental quality versus economic performance: A dynamic game approach,, Optimal Control Appl. Methods, 32 (2011), 29.  doi: 10.1002/oca.927.  Google Scholar

[6]

R. Boucekkine, C. Saglam and T. Vall\'ee, Technology adoption under embodiment: A two-stage optimal control approach,, Macroeconomic Dynamics, 8 (2004), 250.   Google Scholar

[7]

R. Bulirsch, E. Nerz, H. J. Pesch and O. von Stryk, Combining direct and indirect methods in optimal control: Range maximization of a hang glider,, in, 111 (1993), 273.   Google Scholar

[8]

B. Buonomo, A simple analysis of vaccination strategies for rubella,, Math. Biosci. Engineering, 8 (2011), 677.   Google Scholar

[9]

B. Buonomo, On the optimal vaccination strategies for horizontally and vertically transmitted infectious diseases,, J. Biol. Sys., 19 (2011), 263.  doi: 10.1142/S0218339011003853.  Google Scholar

[10]

C. W. Clark, "Mathematical Bioeconomics: The Optimal Management of Renewable Resources,", Third edition, (2010).   Google Scholar

[11]

A. d'Onofrio and P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious disease,, J. Theor. Biol., 256 (2009), 473.  doi: 10.1016/j.jtbi.2008.10.005.  Google Scholar

[12]

Z. Feng, Y. Yang, D. Xu, P. Zhang, M. M. Mc Cauley and J. W. Glasser, Timely identification of optimal control strategies for emerging infectious diseases,, J. Theor. Biol., 259 (2009), 165.  doi: 10.1016/j.jtbi.2009.03.006.  Google Scholar

[13]

K. R. Fister, S. Lenhart and J. S. McNally, Optimizing chemotherapy in an HIV model,, Electron. J. Differential Equations, 1998 ().   Google Scholar

[14]

K. R. Fister and J. C. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy,, SIAM J. Appl. Math., 60 (2000), 1059.  doi: 10.1137/S0036139998338509.  Google Scholar

[15]

K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954.  doi: 10.1137/S0036139902413489.  Google Scholar

[16]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control,", Applications of Mathematics, (1975).   Google Scholar

[17]

H. Gaff and E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models,, Math. Biosci. Engineering, 6 (2009), 469.   Google Scholar

[18]

D. Grass, J. P. Caulkins, G. Feichtinger, G. Tragler and D. A. Behrens, "Optimal Control of Nonlinear Processes. With Applications in Drugs, Corruption, and Terror,", Springer-Verlag, (2008).   Google Scholar

[19]

A. Huhtala, A post-consumer waste management model for determining optimal levels of recycling and landfilling,, Environ. Resour. Econom., 10 (1997), 301.  doi: 10.1023/A:1026475208718.  Google Scholar

[20]

Italian Ministry of Health, "Nuova Influenza." Available from:, , ().   Google Scholar

[21]

Italian Ministry of Health, "FluNews," no. 28, May 3-9, 2010 (18th week)., Available from: , ().   Google Scholar

[22]

H. R. Joshi, Optimal control of an HIV immunology model,, Optimal Control Appl. Methods, 23 (2002), 199.  doi: 10.1002/oca.710.  Google Scholar

[23]

E. Jung, S. Iwami, Y. Takeuchi and T.-C. Jo, Optimal control strategy for prevention of avian influenza pandemic,, J. Theor. Biol., 260 (2009), 220.  doi: 10.1016/j.jtbi.2009.05.031.  Google Scholar

[24]

E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model,, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 473.   Google Scholar

[25]

S. Lee, G. Chowell and C. Castillo-Chavez, Optimal control for pandemic influenza: The role of limited antiviraltreatment and isolation,, J. Theor. Biol., 265 (2010), 136.  doi: 10.1016/j.jtbi.2010.04.003.  Google Scholar

[26]

S. Lee, R. Morales and C. Castillo-Chavez, A note on the use of influenza vaccination strategies when supply is limited,, Math. Biosci. Engineering, 8 (2011), 171.   Google Scholar

[27]

S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007).   Google Scholar

[28]

F. Lin, K. Muthuraman and M. Lawley, An optimal control theory approach to non-pharmaceutical interventions,, BMC Infect. Dis., 10 (2010), 32.  doi: 10.1186/1471-2334-10-32.  Google Scholar

[29]

, MATLAB© , "Matlab Release 12,", The Mathworks Inc., (2000).   Google Scholar

[30]

R. L. Miller Neilan, E. Schaefer, H. Gaff, K. R. Fister and S. Lenhart, Modeling optimal intervention strategies for cholera,, Bull. Math. Biol., 72 (2010), 2004.  doi: 10.1007/s11538-010-9521-8.  Google Scholar

[31]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Interscience Publishers John Wiley & Sons, (1962).   Google Scholar

[32]

O. Prosper, O. Saucedo, D. Thompson, G. Torres-Garcia, X. Wang and C. Castillo-Chavez, Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza,, Math. Biosci. Engineering, 8 (2011), 141.   Google Scholar

[33]

R. J. Rossana, Delivery lags and buffer stocks in the theory of investment by the firm,, J. Econ. Dyn. Control, 9 (1985), 135.   Google Scholar

[34]

W. H. Schmidt, Numerical methods for optimal control problems with ODE or integral equations,, in, 3743 (2006), 255.   Google Scholar

[35]

K. Tomiyama, Two-stage optimal control problems and optimality conditions,, J. Econ. Dyn. Control, 9 (1985), 317.   Google Scholar

show all references

References:
[1]

S. Anita, V. Arnăutu and V. Capasso, "An Introduction to Optimal Control Problems in Life Sciences and Economics,", Modeling and Simulation in Science, (2011).   Google Scholar

[2]

E. Asano, L. J. Gross, S. Lenhart and L. A. Real, Optimal control of vaccine distribution in a rabies metapopulation model,, Math. Biosci. Engineering, 5 (2008), 219.   Google Scholar

[3]

H. Behncke, Optimal control of deterministic epidemics,, Optimal Control Appl. Methods, 21 (2000), 269.  doi: 10.1002/oca.678.  Google Scholar

[4]

K. W. Blayneh, A. B. Gumel, S. Lenhart and T. Clayton, Backward bifurcation and optimal control in transmission dynamics of West Nile Virus,, Bull. Math. Biol., 72 (2010), 1006.  doi: 10.1007/s11538-009-9480-0.  Google Scholar

[5]

R. Boucekkine, J. B. Krawczyk and T. Vall\'ee, Environmental quality versus economic performance: A dynamic game approach,, Optimal Control Appl. Methods, 32 (2011), 29.  doi: 10.1002/oca.927.  Google Scholar

[6]

R. Boucekkine, C. Saglam and T. Vall\'ee, Technology adoption under embodiment: A two-stage optimal control approach,, Macroeconomic Dynamics, 8 (2004), 250.   Google Scholar

[7]

R. Bulirsch, E. Nerz, H. J. Pesch and O. von Stryk, Combining direct and indirect methods in optimal control: Range maximization of a hang glider,, in, 111 (1993), 273.   Google Scholar

[8]

B. Buonomo, A simple analysis of vaccination strategies for rubella,, Math. Biosci. Engineering, 8 (2011), 677.   Google Scholar

[9]

B. Buonomo, On the optimal vaccination strategies for horizontally and vertically transmitted infectious diseases,, J. Biol. Sys., 19 (2011), 263.  doi: 10.1142/S0218339011003853.  Google Scholar

[10]

C. W. Clark, "Mathematical Bioeconomics: The Optimal Management of Renewable Resources,", Third edition, (2010).   Google Scholar

[11]

A. d'Onofrio and P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious disease,, J. Theor. Biol., 256 (2009), 473.  doi: 10.1016/j.jtbi.2008.10.005.  Google Scholar

[12]

Z. Feng, Y. Yang, D. Xu, P. Zhang, M. M. Mc Cauley and J. W. Glasser, Timely identification of optimal control strategies for emerging infectious diseases,, J. Theor. Biol., 259 (2009), 165.  doi: 10.1016/j.jtbi.2009.03.006.  Google Scholar

[13]

K. R. Fister, S. Lenhart and J. S. McNally, Optimizing chemotherapy in an HIV model,, Electron. J. Differential Equations, 1998 ().   Google Scholar

[14]

K. R. Fister and J. C. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy,, SIAM J. Appl. Math., 60 (2000), 1059.  doi: 10.1137/S0036139998338509.  Google Scholar

[15]

K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954.  doi: 10.1137/S0036139902413489.  Google Scholar

[16]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control,", Applications of Mathematics, (1975).   Google Scholar

[17]

H. Gaff and E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models,, Math. Biosci. Engineering, 6 (2009), 469.   Google Scholar

[18]

D. Grass, J. P. Caulkins, G. Feichtinger, G. Tragler and D. A. Behrens, "Optimal Control of Nonlinear Processes. With Applications in Drugs, Corruption, and Terror,", Springer-Verlag, (2008).   Google Scholar

[19]

A. Huhtala, A post-consumer waste management model for determining optimal levels of recycling and landfilling,, Environ. Resour. Econom., 10 (1997), 301.  doi: 10.1023/A:1026475208718.  Google Scholar

[20]

Italian Ministry of Health, "Nuova Influenza." Available from:, , ().   Google Scholar

[21]

Italian Ministry of Health, "FluNews," no. 28, May 3-9, 2010 (18th week)., Available from: , ().   Google Scholar

[22]

H. R. Joshi, Optimal control of an HIV immunology model,, Optimal Control Appl. Methods, 23 (2002), 199.  doi: 10.1002/oca.710.  Google Scholar

[23]

E. Jung, S. Iwami, Y. Takeuchi and T.-C. Jo, Optimal control strategy for prevention of avian influenza pandemic,, J. Theor. Biol., 260 (2009), 220.  doi: 10.1016/j.jtbi.2009.05.031.  Google Scholar

[24]

E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model,, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 473.   Google Scholar

[25]

S. Lee, G. Chowell and C. Castillo-Chavez, Optimal control for pandemic influenza: The role of limited antiviraltreatment and isolation,, J. Theor. Biol., 265 (2010), 136.  doi: 10.1016/j.jtbi.2010.04.003.  Google Scholar

[26]

S. Lee, R. Morales and C. Castillo-Chavez, A note on the use of influenza vaccination strategies when supply is limited,, Math. Biosci. Engineering, 8 (2011), 171.   Google Scholar

[27]

S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007).   Google Scholar

[28]

F. Lin, K. Muthuraman and M. Lawley, An optimal control theory approach to non-pharmaceutical interventions,, BMC Infect. Dis., 10 (2010), 32.  doi: 10.1186/1471-2334-10-32.  Google Scholar

[29]

, MATLAB© , "Matlab Release 12,", The Mathworks Inc., (2000).   Google Scholar

[30]

R. L. Miller Neilan, E. Schaefer, H. Gaff, K. R. Fister and S. Lenhart, Modeling optimal intervention strategies for cholera,, Bull. Math. Biol., 72 (2010), 2004.  doi: 10.1007/s11538-010-9521-8.  Google Scholar

[31]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Interscience Publishers John Wiley & Sons, (1962).   Google Scholar

[32]

O. Prosper, O. Saucedo, D. Thompson, G. Torres-Garcia, X. Wang and C. Castillo-Chavez, Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza,, Math. Biosci. Engineering, 8 (2011), 141.   Google Scholar

[33]

R. J. Rossana, Delivery lags and buffer stocks in the theory of investment by the firm,, J. Econ. Dyn. Control, 9 (1985), 135.   Google Scholar

[34]

W. H. Schmidt, Numerical methods for optimal control problems with ODE or integral equations,, in, 3743 (2006), 255.   Google Scholar

[35]

K. Tomiyama, Two-stage optimal control problems and optimality conditions,, J. Econ. Dyn. Control, 9 (1985), 317.   Google Scholar

[1]

Zi Sang, Zhipeng Qiu, Xiefei Yan, Yun Zou. Assessing the effect of non-pharmaceutical interventions on containing an emerging disease. Mathematical Biosciences & Engineering, 2012, 9 (1) : 147-164. doi: 10.3934/mbe.2012.9.147

[2]

Joaquim P. Mateus, Paulo Rebelo, Silvério Rosa, César M. Silva, Delfim F. M. Torres. Optimal control of non-autonomous SEIRS models with vaccination and treatment. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1179-1199. doi: 10.3934/dcdss.2018067

[3]

Majid Jaberi-Douraki, Seyed M. Moghadas. Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1045-1063. doi: 10.3934/mbe.2014.11.1045

[4]

Maria do Rosário de Pinho, Helmut Maurer, Hasnaa Zidani. Optimal control of normalized SIMR models with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 79-99. doi: 10.3934/dcdsb.2018006

[5]

Notice Ringa, Chris T. Bauch. Spatially-implicit modelling of disease-behaviour interactions in the context of non-pharmaceutical interventions. Mathematical Biosciences & Engineering, 2018, 15 (2) : 461-483. doi: 10.3934/mbe.2018021

[6]

Bin Li, Jie Sun, Honglei Xu, Min Zhang. A class of two-stage distributionally robust games. Journal of Industrial & Management Optimization, 2019, 15 (1) : 387-400. doi: 10.3934/jimo.2018048

[7]

Holly Gaff, Elsa Schaefer. Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences & Engineering, 2009, 6 (3) : 469-492. doi: 10.3934/mbe.2009.6.469

[8]

Jingzhi Li, Hongyu Liu, Qi Wang. Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 547-561. doi: 10.3934/dcdss.2015.8.547

[9]

Zhiping Chen, Youpan Han. Continuity and stability of two-stage stochastic programs with quadratic continuous recourse. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 197-209. doi: 10.3934/naco.2015.5.197

[10]

Urszula Foryś, Beata Zduniak. Two-stage model of carcinogenic mutations with the influence of delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2501-2519. doi: 10.3934/dcdsb.2014.19.2501

[11]

Eunha Shim. A note on epidemic models with infective immigrants and vaccination. Mathematical Biosciences & Engineering, 2006, 3 (3) : 557-566. doi: 10.3934/mbe.2006.3.557

[12]

René Henrion, Christian Küchler, Werner Römisch. Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 363-384. doi: 10.3934/jimo.2008.4.363

[13]

Chien Hsun Tseng. Applications of a nonlinear optimization solver and two-stage comprehensive Denoising techniques for optimum underwater wideband sonar echolocation system. Journal of Industrial & Management Optimization, 2013, 9 (1) : 205-225. doi: 10.3934/jimo.2013.9.205

[14]

Dan Liu, Shigui Ruan, Deming Zhu. Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions. Mathematical Biosciences & Engineering, 2012, 9 (2) : 347-368. doi: 10.3934/mbe.2012.9.347

[15]

Biswajit Sarkar, Bijoy Kumar Shaw, Taebok Kim, Mitali Sarkar, Dongmin Shin. An integrated inventory model with variable transportation cost, two-stage inspection, and defective items. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1975-1990. doi: 10.3934/jimo.2017027

[16]

Rüdiger Schultz. Two-stage stochastic programs: Integer variables, dominance relations and PDE constraints. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 713-738. doi: 10.3934/naco.2012.2.713

[17]

Ming-Yong Lai, Chang-Shi Liu, Xiao-Jiao Tong. A two-stage hybrid meta-heuristic for pickup and delivery vehicle routing problem with time windows. Journal of Industrial & Management Optimization, 2010, 6 (2) : 435-451. doi: 10.3934/jimo.2010.6.435

[18]

Chao Mi, Jun Wang, Weijian Mi, Youfang Huang, Zhiwei Zhang, Yongsheng Yang, Jun Jiang, Postolache Octavian. Research on regional clustering and two-stage SVM method for container truck recognition. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1117-1133. doi: 10.3934/dcdss.2019077

[19]

Qingqing Ye. Algorithmic computation of MAP/PH/1 queue with finite system capacity and two-stage vacations. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019063

[20]

Jianquan Li, Zhien Ma. Stability analysis for SIS epidemic models with vaccination and constant population size. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 635-642. doi: 10.3934/dcdsb.2004.4.635

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]