2012, 9(3): 553-576. doi: 10.3934/mbe.2012.9.553

Parameter estimation and uncertainty quantification for an epidemic model

1. 

Center for Quantitative Sciences in Biomedicine and Department of Mathematics, North Carolina State University, Raleigh, NC 27695, and Department of Mathematics & Computer Science, Valparaiso University, 1900 Chapel Drive, Valparaiso, IN 46383, United States

2. 

Department of Mathematics, University of North Carolina, Chapel Hill, CB #3250, Chapel Hill, NC 27599, United States

3. 

Program in Applied Mathematics, University of Arizona, 617 N. Santa Rita Ave., PO Box 210089, Tucson, AZ 85721-0089, United States

4. 

Department of Mathematics, Morehouse College, 830 Westview Drive SW Unit 142133, Atlanta, GA 30314, United States

5. 

Department of Mathematics, North Carolina State University, Raleigh, NC 27695, United States

6. 

Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh NC, 27695, USA and Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, United States

Received  December 2009 Revised  April 2012 Published  July 2012

We examine estimation of the parameters of Susceptible-Infective-Recovered (SIR) models in the context of least squares. We review the use of asymptotic statistical theory and sensitivity analysis to obtain measures of uncertainty for estimates of the model parameters and the basic reproductive number ($R_0$)---an epidemiologically significant parameter grouping. We find that estimates of different parameters, such as the transmission parameter and recovery rate, are correlated, with the magnitude and sign of this correlation depending on the value of $R_0$. Situations are highlighted in which this correlation allows $R_0$ to be estimated with greater ease than its constituent parameters. Implications of correlation for parameter identifiability are discussed. Uncertainty estimates and sensitivity analysis are used to investigate how the frequency at which data is sampled affects the estimation process and how the accuracy and uncertainty of estimates improves as data is collected over the course of an outbreak. We assess the informativeness of individual data points in a given time series to determine when more frequent sampling (if possible) would prove to be most beneficial to the estimation process. This technique can be used to design data sampling schemes in more general contexts.
Citation: Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd. Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (3) : 553-576. doi: 10.3934/mbe.2012.9.553
References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans,", Oxford University Press, (1991).   Google Scholar

[2]

D. T. Anh, M. P. Bonnet, G. Vachaud, C. V. Minh, N. Prieur, L. V. Duc and L. L. Anh, Biochemical modeling of the Nhue River (Hanoi, Vietnam): Practical identifiability analysis and parameters estimation,, Ecol. Model., 193 (2006), 182.  doi: 10.1016/j.ecolmodel.2005.08.029.  Google Scholar

[3]

H. T. Banks, M. Davidian, J. R. Samuels Jr. and K. L. Sutton, An inverse problem statistical methodology summary,, in, (2009), 249.   Google Scholar

[4]

H. T. Banks, S. Dediu and S. L. Ernstberger, Sensitivity functions and their uses in inverse problems,, Tech. Report CRSC-TR07-12, (2007), 07.   Google Scholar

[5]

H. T. Banks, S. L. Ernstberger and S. L. Grove, Standard errors and confidence intervals in inverse problems: Sensitivity and associated pitfalls,, J. Inverse Ill-Posed Probl., 15 (2007), 1.   Google Scholar

[6]

R. Bellman and K. J. Åström, On structural identifiability,, Math. Biosci., 7 (1970), 329.  doi: 10.1016/0025-5564(70)90132-X.  Google Scholar

[7]

R. Brun, M. Kühni, H. Siegrist, W. Gujer and P. Reichert, Practical identifiability of ASM2d parameters-systematic selection and tuning of parameter subsets,, Water Res., 36 (2002), 4113.  doi: 10.1016/S0043-1354(02)00104-5.  Google Scholar

[8]

M. Burth, G. C. Verghese and M. Vélez-Reyes, Subset selection for improved parameter estimation in on-line identification of a synchronous generator,, IEEE Trans. Power Syst., 14 (1999), 218.  doi: 10.1109/59.744536.  Google Scholar

[9]

A. Capaldi, S. Behrend, B. Berman, J. Smith, J. Wright and A. L. Lloyd, Parameter estimation and uncertainty quantification for an epidemic model,, Tech. Report CRSC-TR09-18, (2009), 09.   Google Scholar

[10]

S. Cauchemez, P.-Y. Böelle, G. Thomas and A.-J. Valleron, Estimating in real time the efficacy of measures to control emerging communicable diseases,, Am. J. Epidemiol., 164 (2006), 591.  doi: 10.1093/aje/kwj274.  Google Scholar

[11]

S. Cauchemez and N. M. Ferguson, Likelihood-based estimation of continuous-time epidemic models from time-series data: Application to measles transmission in London,, J. R. Soc. Interface, 5 (2008), 885.  doi: 10.1098/rsif.2007.1292.  Google Scholar

[12]

G. Chowell, C. E. Ammon, N. W. Hengartner and J. M. Hyman, Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland,, Math. Biosci. Eng., 4 (2007), 457.  doi: 10.3934/mbe.2007.4.457.  Google Scholar

[13]

G. Chowell, N. W. Hengartner, C. Castillo-Chávez, P. W. Fenimore and J. M. Hyman, The basic reproductive number of ebola and the effects of public health measures: The cases of Congo and Uganda,, J. Theor. Biol., 229 (2004), 119.  doi: 10.1016/j.jtbi.2004.03.006.  Google Scholar

[14]

G. Chowell, M. A. Miller and C. Viboud, Seasonal influenza in the United States, France and Australia: Transmission and prospects for control,, Epidemiol. Infect., 136 (2007), 852.   Google Scholar

[15]

A. Cintrón-Arias, H. T. Banks, A. Capaldi and A. L. Lloyd, A sensitivity matrix based methodology for inverse problem formulation,, J. Inv. Ill-Posed Problems, 17 (2009), 545.  doi: 10.1515/JIIP.2009.034.  Google Scholar

[16]

A. Cintrón-Arias, C. Castillo-Chávez, L. M. A. Bettencourt, A. L. Lloyd and H. T. Banks, The estimation of the effective reproductive number from disease outbreak data,, Math. Biosci. Eng., 6 (2009), 261.  doi: 10.3934/mbe.2009.6.261.  Google Scholar

[17]

C. Cobelli and J. J. {DiStefano, III}, Parameter and structural identifiability concepts and ambiguities: A critical review and analysis,, Am. J. Physiol. (Regulatory Integrative Comp. Physiol. 8), 239 (1980).   Google Scholar

[18]

M. Davidian and D. M. Giltinan, "Nonlinear Models for Repeated Measurement Data,", Chapman & Hall, (1996).   Google Scholar

[19]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation,", Wiley Series in Mathematical and Computational Biology, (2000).   Google Scholar

[20]

K. Dietz, The estimation of the basic reproduction number for infectious diseases,, Stat. Meth. Med. Res., 2 (1993), 23.  doi: 10.1177/096228029300200103.  Google Scholar

[21]

M. Eslami, "Theory of Sensitivity in Dynamic Systems. An Introduction,", Springer-Verlag, (1994).   Google Scholar

[22]

N. D. Evans, L. J. White, M. J. Chapman, K. R. Godfrey and M. J. Chappell, The structural identifiability of the susceptible infected recovered model with seasonal forcing,, Math. Biosci., 194 (2005), 175.  doi: 10.1016/j.mbs.2004.10.011.  Google Scholar

[23]

B. Finkenstädt and B. Grenfell, Empirical determinants of measles metapopulation dynamics in England and Wales,, Proc. R. Soc. Lond. B, 265 (1998), 211.  doi: 10.1098/rspb.1998.0284.  Google Scholar

[24]

K. Glover and J. C. Willems, Parametrizations of linear dynamical systems: Canonical forms and identifiability,, IEEE Trans. Auto. Contr., AC-19 (1974), 640.   Google Scholar

[25]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev., 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[26]

T. D. Hollingsworth, N. M. Ferguson and R. M. Anderson, Will travel restrictions control the international spread of pandemic influenza?,, Nature Med., 12 (2006), 497.  doi: 10.1038/nm0506-497.  Google Scholar

[27]

A. Holmberg, On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities,, Math. Biosci., 62 (1982), 23.  doi: 10.1016/0025-5564(82)90061-X.  Google Scholar

[28]

J. A. Jacquez and P. Greif, Numerical parameter identifiability and estimability: Integrating identifiability, estimability and optimal sampling design,, Math. Biosci., 77 (1985), 201.  doi: 10.1016/0025-5564(85)90098-7.  Google Scholar

[29]

S. Kotz, N. Balakrishnan, C. Read and B. Vidakovic, eds., "Encyclopedia of Statistics,", 2nd edition, (2006).   Google Scholar

[30]

M. Kretzschmar, S. van den Hof, J. Wallinga and J. van Wijngaarden, Ring vaccination and smallpox control,, Emerg. Inf. Dis., 10 (2004), 832.  doi: 10.3201/eid1005.030419.  Google Scholar

[31]

P. E. Lekone and B. F. Finkenstädt, Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study,, Biometrics, 62 (2006), 1170.  doi: 10.1111/j.1541-0420.2006.00609.x.  Google Scholar

[32]

A. L. Lloyd, The dependence of viral parameter estimates on the assumed viral life cycle: Limitations of studies of viral load data,, Proc. R. Soc. Lond. B, 268 (2001), 847.  doi: 10.1098/rspb.2000.1572.  Google Scholar

[33]

—, Sensitivity of model-based epidemiological parameter estimation to model assumptions,, in, (2009), 123.   Google Scholar

[34]

C. D. Meyer, "Matrix Analysis and Applied Linear Algebra,", SIAM, (2000).  doi: 10.1137/1.9780898719512.  Google Scholar

[35]

M. A. Nowak, A. L. Lloyd, G. M. Vasquez, T. A. Wiltrout, L. M. Wahl, N. Bischofberger, J. Williams, A. Kinter, A. S. Fauci, V. M. Hirsch and J. D. Lifson, Viral dynamics of primary viremia and antiretroviral therapy in simian immunodeficiency virus infection,, J. Virol., 71 (1997), 7518.   Google Scholar

[36]

J. G. Reid, Structural identifiability in linear time-invariant systems,, IEEE Trans. Auto. Contr., AC-22 (1977), 242.  doi: 10.1109/TAC.1977.1101474.  Google Scholar

[37]

A. Saltelli, K. Chan and E. M. Scott, eds., "Sensitivity Analysis,", Wiley Series in Probability and Statistics, (2000).   Google Scholar

[38]

M. A. Sanchez and S. M. Blower, Uncertainty and sensitivity analysis of the basic reproductive rate,, Am. J. Epidemiol., 145 (1997), 1127.  doi: 10.1093/oxfordjournals.aje.a009076.  Google Scholar

[39]

G. A. F. Seber and C. J. Wild, "Nonlinear Regression,", John Wiley & Sons, (2003).   Google Scholar

[40]

K. Thomaseth and C. Cobelli, Generalized sensitivity functions in physiological system identification,, Ann. Biomed. Eng., 27 (1999), 607.  doi: 10.1114/1.207.  Google Scholar

[41]

J. Wallinga and M. Lipsitch, How generation intervals shape the relationship between growth rates and reproductive numbers,, Proc. R. Soc. Lond. B, 274 (2007), 599.   Google Scholar

[42]

H. J. Wearing, P. Rohani and M. Keeling, Appropriate models for the management of infectious diseases,, PLoS Med., 2 (2005).  doi: 10.1371/journal.pmed.0020174.  Google Scholar

[43]

L. J. White, N. D. Evans, T. J. G. M. Lam, Y. H. Schukken, G. F. Medley, K. R. Godfrey and M. J. Chappell, The structural identifiability and parameter estimation of a multispecies model for the transmission of mastitis in dairy cows,, Math. Biosci., 174 (2001), 77.  doi: 10.1016/S0025-5564(01)00080-3.  Google Scholar

[44]

H. Wu, H. Zhu, H. Miao and A. S. Perelson, Parameter identifiability and estimation of HIV/AIDS dynamic models,, Bull. Math. Biol., 70 (2008), 785.  doi: 10.1007/s11538-007-9279-9.  Google Scholar

[45]

X. Xia and C. H. Moog, Identifiability of nonlinear systems with application to HIV/AIDS models,, IEEE Trans. Auto. Contr., 48 (2003), 330.  doi: 10.1109/TAC.2002.808494.  Google Scholar

[46]

H. Yue, M. Brown, F. He, J. Jia and D. B. Kell, Sensitivity analysis and robust experimental design of a signal transduction pathway system,, Int. J. Chem. Kinet., 40 (2008), 730.  doi: 10.1002/kin.20369.  Google Scholar

show all references

References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans,", Oxford University Press, (1991).   Google Scholar

[2]

D. T. Anh, M. P. Bonnet, G. Vachaud, C. V. Minh, N. Prieur, L. V. Duc and L. L. Anh, Biochemical modeling of the Nhue River (Hanoi, Vietnam): Practical identifiability analysis and parameters estimation,, Ecol. Model., 193 (2006), 182.  doi: 10.1016/j.ecolmodel.2005.08.029.  Google Scholar

[3]

H. T. Banks, M. Davidian, J. R. Samuels Jr. and K. L. Sutton, An inverse problem statistical methodology summary,, in, (2009), 249.   Google Scholar

[4]

H. T. Banks, S. Dediu and S. L. Ernstberger, Sensitivity functions and their uses in inverse problems,, Tech. Report CRSC-TR07-12, (2007), 07.   Google Scholar

[5]

H. T. Banks, S. L. Ernstberger and S. L. Grove, Standard errors and confidence intervals in inverse problems: Sensitivity and associated pitfalls,, J. Inverse Ill-Posed Probl., 15 (2007), 1.   Google Scholar

[6]

R. Bellman and K. J. Åström, On structural identifiability,, Math. Biosci., 7 (1970), 329.  doi: 10.1016/0025-5564(70)90132-X.  Google Scholar

[7]

R. Brun, M. Kühni, H. Siegrist, W. Gujer and P. Reichert, Practical identifiability of ASM2d parameters-systematic selection and tuning of parameter subsets,, Water Res., 36 (2002), 4113.  doi: 10.1016/S0043-1354(02)00104-5.  Google Scholar

[8]

M. Burth, G. C. Verghese and M. Vélez-Reyes, Subset selection for improved parameter estimation in on-line identification of a synchronous generator,, IEEE Trans. Power Syst., 14 (1999), 218.  doi: 10.1109/59.744536.  Google Scholar

[9]

A. Capaldi, S. Behrend, B. Berman, J. Smith, J. Wright and A. L. Lloyd, Parameter estimation and uncertainty quantification for an epidemic model,, Tech. Report CRSC-TR09-18, (2009), 09.   Google Scholar

[10]

S. Cauchemez, P.-Y. Böelle, G. Thomas and A.-J. Valleron, Estimating in real time the efficacy of measures to control emerging communicable diseases,, Am. J. Epidemiol., 164 (2006), 591.  doi: 10.1093/aje/kwj274.  Google Scholar

[11]

S. Cauchemez and N. M. Ferguson, Likelihood-based estimation of continuous-time epidemic models from time-series data: Application to measles transmission in London,, J. R. Soc. Interface, 5 (2008), 885.  doi: 10.1098/rsif.2007.1292.  Google Scholar

[12]

G. Chowell, C. E. Ammon, N. W. Hengartner and J. M. Hyman, Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland,, Math. Biosci. Eng., 4 (2007), 457.  doi: 10.3934/mbe.2007.4.457.  Google Scholar

[13]

G. Chowell, N. W. Hengartner, C. Castillo-Chávez, P. W. Fenimore and J. M. Hyman, The basic reproductive number of ebola and the effects of public health measures: The cases of Congo and Uganda,, J. Theor. Biol., 229 (2004), 119.  doi: 10.1016/j.jtbi.2004.03.006.  Google Scholar

[14]

G. Chowell, M. A. Miller and C. Viboud, Seasonal influenza in the United States, France and Australia: Transmission and prospects for control,, Epidemiol. Infect., 136 (2007), 852.   Google Scholar

[15]

A. Cintrón-Arias, H. T. Banks, A. Capaldi and A. L. Lloyd, A sensitivity matrix based methodology for inverse problem formulation,, J. Inv. Ill-Posed Problems, 17 (2009), 545.  doi: 10.1515/JIIP.2009.034.  Google Scholar

[16]

A. Cintrón-Arias, C. Castillo-Chávez, L. M. A. Bettencourt, A. L. Lloyd and H. T. Banks, The estimation of the effective reproductive number from disease outbreak data,, Math. Biosci. Eng., 6 (2009), 261.  doi: 10.3934/mbe.2009.6.261.  Google Scholar

[17]

C. Cobelli and J. J. {DiStefano, III}, Parameter and structural identifiability concepts and ambiguities: A critical review and analysis,, Am. J. Physiol. (Regulatory Integrative Comp. Physiol. 8), 239 (1980).   Google Scholar

[18]

M. Davidian and D. M. Giltinan, "Nonlinear Models for Repeated Measurement Data,", Chapman & Hall, (1996).   Google Scholar

[19]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation,", Wiley Series in Mathematical and Computational Biology, (2000).   Google Scholar

[20]

K. Dietz, The estimation of the basic reproduction number for infectious diseases,, Stat. Meth. Med. Res., 2 (1993), 23.  doi: 10.1177/096228029300200103.  Google Scholar

[21]

M. Eslami, "Theory of Sensitivity in Dynamic Systems. An Introduction,", Springer-Verlag, (1994).   Google Scholar

[22]

N. D. Evans, L. J. White, M. J. Chapman, K. R. Godfrey and M. J. Chappell, The structural identifiability of the susceptible infected recovered model with seasonal forcing,, Math. Biosci., 194 (2005), 175.  doi: 10.1016/j.mbs.2004.10.011.  Google Scholar

[23]

B. Finkenstädt and B. Grenfell, Empirical determinants of measles metapopulation dynamics in England and Wales,, Proc. R. Soc. Lond. B, 265 (1998), 211.  doi: 10.1098/rspb.1998.0284.  Google Scholar

[24]

K. Glover and J. C. Willems, Parametrizations of linear dynamical systems: Canonical forms and identifiability,, IEEE Trans. Auto. Contr., AC-19 (1974), 640.   Google Scholar

[25]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev., 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[26]

T. D. Hollingsworth, N. M. Ferguson and R. M. Anderson, Will travel restrictions control the international spread of pandemic influenza?,, Nature Med., 12 (2006), 497.  doi: 10.1038/nm0506-497.  Google Scholar

[27]

A. Holmberg, On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities,, Math. Biosci., 62 (1982), 23.  doi: 10.1016/0025-5564(82)90061-X.  Google Scholar

[28]

J. A. Jacquez and P. Greif, Numerical parameter identifiability and estimability: Integrating identifiability, estimability and optimal sampling design,, Math. Biosci., 77 (1985), 201.  doi: 10.1016/0025-5564(85)90098-7.  Google Scholar

[29]

S. Kotz, N. Balakrishnan, C. Read and B. Vidakovic, eds., "Encyclopedia of Statistics,", 2nd edition, (2006).   Google Scholar

[30]

M. Kretzschmar, S. van den Hof, J. Wallinga and J. van Wijngaarden, Ring vaccination and smallpox control,, Emerg. Inf. Dis., 10 (2004), 832.  doi: 10.3201/eid1005.030419.  Google Scholar

[31]

P. E. Lekone and B. F. Finkenstädt, Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study,, Biometrics, 62 (2006), 1170.  doi: 10.1111/j.1541-0420.2006.00609.x.  Google Scholar

[32]

A. L. Lloyd, The dependence of viral parameter estimates on the assumed viral life cycle: Limitations of studies of viral load data,, Proc. R. Soc. Lond. B, 268 (2001), 847.  doi: 10.1098/rspb.2000.1572.  Google Scholar

[33]

—, Sensitivity of model-based epidemiological parameter estimation to model assumptions,, in, (2009), 123.   Google Scholar

[34]

C. D. Meyer, "Matrix Analysis and Applied Linear Algebra,", SIAM, (2000).  doi: 10.1137/1.9780898719512.  Google Scholar

[35]

M. A. Nowak, A. L. Lloyd, G. M. Vasquez, T. A. Wiltrout, L. M. Wahl, N. Bischofberger, J. Williams, A. Kinter, A. S. Fauci, V. M. Hirsch and J. D. Lifson, Viral dynamics of primary viremia and antiretroviral therapy in simian immunodeficiency virus infection,, J. Virol., 71 (1997), 7518.   Google Scholar

[36]

J. G. Reid, Structural identifiability in linear time-invariant systems,, IEEE Trans. Auto. Contr., AC-22 (1977), 242.  doi: 10.1109/TAC.1977.1101474.  Google Scholar

[37]

A. Saltelli, K. Chan and E. M. Scott, eds., "Sensitivity Analysis,", Wiley Series in Probability and Statistics, (2000).   Google Scholar

[38]

M. A. Sanchez and S. M. Blower, Uncertainty and sensitivity analysis of the basic reproductive rate,, Am. J. Epidemiol., 145 (1997), 1127.  doi: 10.1093/oxfordjournals.aje.a009076.  Google Scholar

[39]

G. A. F. Seber and C. J. Wild, "Nonlinear Regression,", John Wiley & Sons, (2003).   Google Scholar

[40]

K. Thomaseth and C. Cobelli, Generalized sensitivity functions in physiological system identification,, Ann. Biomed. Eng., 27 (1999), 607.  doi: 10.1114/1.207.  Google Scholar

[41]

J. Wallinga and M. Lipsitch, How generation intervals shape the relationship between growth rates and reproductive numbers,, Proc. R. Soc. Lond. B, 274 (2007), 599.   Google Scholar

[42]

H. J. Wearing, P. Rohani and M. Keeling, Appropriate models for the management of infectious diseases,, PLoS Med., 2 (2005).  doi: 10.1371/journal.pmed.0020174.  Google Scholar

[43]

L. J. White, N. D. Evans, T. J. G. M. Lam, Y. H. Schukken, G. F. Medley, K. R. Godfrey and M. J. Chappell, The structural identifiability and parameter estimation of a multispecies model for the transmission of mastitis in dairy cows,, Math. Biosci., 174 (2001), 77.  doi: 10.1016/S0025-5564(01)00080-3.  Google Scholar

[44]

H. Wu, H. Zhu, H. Miao and A. S. Perelson, Parameter identifiability and estimation of HIV/AIDS dynamic models,, Bull. Math. Biol., 70 (2008), 785.  doi: 10.1007/s11538-007-9279-9.  Google Scholar

[45]

X. Xia and C. H. Moog, Identifiability of nonlinear systems with application to HIV/AIDS models,, IEEE Trans. Auto. Contr., 48 (2003), 330.  doi: 10.1109/TAC.2002.808494.  Google Scholar

[46]

H. Yue, M. Brown, F. He, J. Jia and D. B. Kell, Sensitivity analysis and robust experimental design of a signal transduction pathway system,, Int. J. Chem. Kinet., 40 (2008), 730.  doi: 10.1002/kin.20369.  Google Scholar

[1]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[2]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[3]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[4]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[7]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[10]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[11]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[12]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[13]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[14]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[15]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[16]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[17]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[18]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[19]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[20]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (19)

[Back to Top]