2012, 9(3): 577-599. doi: 10.3934/mbe.2012.9.577

Multiple endemic states in age-structured $SIR$ epidemic models

1. 

Dept. Mathematics, Università di Trento, Via Sommarive 14, 38123 Povo (TN), Italy, Italy

2. 

Department of Mathematics and Computer Science, University of Udine, via delle Scienze 206, I33100 Udine

Received  June 2011 Revised  February 2012 Published  July 2012

$SIR$ age-structured models are very often used as a basic model of epidemic spread. Yet, their behaviour, under generic assumptions on contact rates between different age classes, is not completely known, and, in the most detailed analysis so far, Inaba (1990) was able to prove uniqueness of the endemic equilibrium only under a rather restrictive condition.
    Here, we show an example in the form of a $3 \times 3$ contact matrix in which multiple non-trivial steady states exist. This instance of non-uniqueness of positive equilibria differs from most existing ones for epidemic models, since it arises not from a backward transcritical bifurcation at the disease free equilibrium, but through two saddle-node bifurcations of the positive equilibrium. The dynamical behaviour of the model is analysed numerically around the range where multiple endemic equilibria exist; many other features are shown to occur, from coexistence of multiple attractive periodic solutions, some with extremely long period, to quasi-periodic and chaotic attractors.
    It is also shown that, if the contact rates are in the form of a $2 \times 2$ WAIFW matrix, uniqueness of non-trivial steady states always holds, so that 3 is the minimum dimension of the contact matrix to allow for multiple endemic equilibria.
Citation: Andrea Franceschetti, Andrea Pugliese, Dimitri Breda. Multiple endemic states in age-structured $SIR$ epidemic models. Mathematical Biosciences & Engineering, 2012, 9 (3) : 577-599. doi: 10.3934/mbe.2012.9.577
References:
[1]

R.M. Anderson and R.M. May, Vaccination against rubella and measles: Quantitative investigations of different policies,, J. Hyg. Camb., 90 (1983), 259.  doi: 10.1017/S002217240002893X.  Google Scholar

[2]

R.M. Anderson and R.M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford University Press, (1991).   Google Scholar

[3]

V.Andreasen, The effect of age-dependent host mortality on the dynamics of an endemic disease,, Math.Biosci., 114 (1993), 5.  doi: 10.1016/0025-5564(93)90041-8.  Google Scholar

[4]

V.Andreasen, Instability in an {SIR}-model with age dependent susceptibility,, in, 1 (1995), 3.   Google Scholar

[5]

D.Breda, M.Iannelli, S.Maset and R.Vermiglio, Stability analysis of the Gurtin-MacCamy model,, SIAM J. Numer. Anal., 46 (2008), 980.  doi: 10.1137/070685658.  Google Scholar

[6]

D.Breda and D.Visetti, Existence, multiplicity and stability of endemic states for an age-structured S-I epidemic model,, Math. Biosci., 235 (2012), 19.  doi: 10.1016/j.mbs.2011.10.004.  Google Scholar

[7]

S.Busenberg, K.Cooke and M.Iannelli, Endemic thresholds and stability in a class of age-structured epidemics,, SIAM J. Appl. Math., 48 (1988), 1379.  doi: 10.1137/0148085.  Google Scholar

[8]

J.M. Cushing, Robert Costantino, Brian Dennis, Robert Desharnais and S.Henson, "Chaos in Ecology: Experimental Nonlinear Dynamics,", Academic Press, (2002).   Google Scholar

[9]

K.Deimling, "Nonlinear Functional Analysis,", Springer Verlag, (1985).   Google Scholar

[10]

A.Franceschetti and A.Pugliese, Threshold behaviour of a SIR epidemic model with age structure and immigration,, J. Math. Biol., 57 (2008), 1.  doi: 10.1007/s00285-007-0143-1.  Google Scholar

[11]

D.Greenhalgh, Threshold and stability results for an epidemic model with an age structured meeting-rate,, IMA Journal of Mathematics applied in Medicine and Biology, 5 (1988), 81.  doi: 10.1093/imammb/5.2.81.  Google Scholar

[12]

H.Guo, M.Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Canadian Appl. Math. Quart., 14 (2006), 259.   Google Scholar

[13]

H. W. Hethcote and H. R. Thieme, Stability of the endemic equilibrium in epidemic models with subpopulations,, Math. Biosci., 75 (1985), 205.  doi: 10.1016/0025-5564(85)90038-0.  Google Scholar

[14]

M.Iannelli, "Mathematical Theory of Age-Structured Population Dynamics,", Giardini editori e stampatori in Pisa, (1994).   Google Scholar

[15]

H.Inaba, Threshold and stability results for an age-structured epidemic model,, Journal of Mathematical Biology, 28 (1990), 411.  doi: 10.1007/BF00178326.  Google Scholar

[16]

T.Kato, "Perturbation Theory for Linear Operators,", Die Grundlehren der mathematischen Wissenschaften, (1966).   Google Scholar

[17]

J.Mossong, N.Hens, M.Jit, P.Beutels, K.Auranen, R.Mikolajczyk, M.Massari, S.Salmaso, G.Scalia Tomba, J.Wallinga, J.Heijne, M.Sadkowska-Todys, M.Rosinska and W.J. Edmunds, Social contacts and mixing patterns relevant to the spread of infectious diseases,, PlOS Medicine, 5 (2008), 381.  doi: 10.1371/journal.pmed.0050074.  Google Scholar

[18]

H. R. Thieme, Stability change of the endemic equilibrium in age-structured models for the spread of SIR type infectious diseases,, in, 92 (1991), 139.   Google Scholar

[19]

E.Zeidler, "Nonlinear Functional Analysis and its Applications. I. Fixed Point Theorems,", Springer-Verlag, (1986).   Google Scholar

show all references

References:
[1]

R.M. Anderson and R.M. May, Vaccination against rubella and measles: Quantitative investigations of different policies,, J. Hyg. Camb., 90 (1983), 259.  doi: 10.1017/S002217240002893X.  Google Scholar

[2]

R.M. Anderson and R.M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford University Press, (1991).   Google Scholar

[3]

V.Andreasen, The effect of age-dependent host mortality on the dynamics of an endemic disease,, Math.Biosci., 114 (1993), 5.  doi: 10.1016/0025-5564(93)90041-8.  Google Scholar

[4]

V.Andreasen, Instability in an {SIR}-model with age dependent susceptibility,, in, 1 (1995), 3.   Google Scholar

[5]

D.Breda, M.Iannelli, S.Maset and R.Vermiglio, Stability analysis of the Gurtin-MacCamy model,, SIAM J. Numer. Anal., 46 (2008), 980.  doi: 10.1137/070685658.  Google Scholar

[6]

D.Breda and D.Visetti, Existence, multiplicity and stability of endemic states for an age-structured S-I epidemic model,, Math. Biosci., 235 (2012), 19.  doi: 10.1016/j.mbs.2011.10.004.  Google Scholar

[7]

S.Busenberg, K.Cooke and M.Iannelli, Endemic thresholds and stability in a class of age-structured epidemics,, SIAM J. Appl. Math., 48 (1988), 1379.  doi: 10.1137/0148085.  Google Scholar

[8]

J.M. Cushing, Robert Costantino, Brian Dennis, Robert Desharnais and S.Henson, "Chaos in Ecology: Experimental Nonlinear Dynamics,", Academic Press, (2002).   Google Scholar

[9]

K.Deimling, "Nonlinear Functional Analysis,", Springer Verlag, (1985).   Google Scholar

[10]

A.Franceschetti and A.Pugliese, Threshold behaviour of a SIR epidemic model with age structure and immigration,, J. Math. Biol., 57 (2008), 1.  doi: 10.1007/s00285-007-0143-1.  Google Scholar

[11]

D.Greenhalgh, Threshold and stability results for an epidemic model with an age structured meeting-rate,, IMA Journal of Mathematics applied in Medicine and Biology, 5 (1988), 81.  doi: 10.1093/imammb/5.2.81.  Google Scholar

[12]

H.Guo, M.Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Canadian Appl. Math. Quart., 14 (2006), 259.   Google Scholar

[13]

H. W. Hethcote and H. R. Thieme, Stability of the endemic equilibrium in epidemic models with subpopulations,, Math. Biosci., 75 (1985), 205.  doi: 10.1016/0025-5564(85)90038-0.  Google Scholar

[14]

M.Iannelli, "Mathematical Theory of Age-Structured Population Dynamics,", Giardini editori e stampatori in Pisa, (1994).   Google Scholar

[15]

H.Inaba, Threshold and stability results for an age-structured epidemic model,, Journal of Mathematical Biology, 28 (1990), 411.  doi: 10.1007/BF00178326.  Google Scholar

[16]

T.Kato, "Perturbation Theory for Linear Operators,", Die Grundlehren der mathematischen Wissenschaften, (1966).   Google Scholar

[17]

J.Mossong, N.Hens, M.Jit, P.Beutels, K.Auranen, R.Mikolajczyk, M.Massari, S.Salmaso, G.Scalia Tomba, J.Wallinga, J.Heijne, M.Sadkowska-Todys, M.Rosinska and W.J. Edmunds, Social contacts and mixing patterns relevant to the spread of infectious diseases,, PlOS Medicine, 5 (2008), 381.  doi: 10.1371/journal.pmed.0050074.  Google Scholar

[18]

H. R. Thieme, Stability change of the endemic equilibrium in age-structured models for the spread of SIR type infectious diseases,, in, 92 (1991), 139.   Google Scholar

[19]

E.Zeidler, "Nonlinear Functional Analysis and its Applications. I. Fixed Point Theorems,", Springer-Verlag, (1986).   Google Scholar

[1]

Dimitri Breda, Stefano Maset, Rossana Vermiglio. Numerical recipes for investigating endemic equilibria of age-structured SIR epidemics. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2675-2699. doi: 10.3934/dcds.2012.32.2675

[2]

Hisashi Inaba. Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 69-96. doi: 10.3934/dcdsb.2006.6.69

[3]

Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643

[4]

Xianlong Fu, Zhihua Liu, Pierre Magal. Hopf bifurcation in an age-structured population model with two delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 657-676. doi: 10.3934/cpaa.2015.14.657

[5]

Hossein Mohebbi, Azim Aminataei, Cameron J. Browne, Mohammad Reza Razvan. Hopf bifurcation of an age-structured virus infection model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 861-885. doi: 10.3934/dcdsb.2018046

[6]

Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264

[7]

Cameron J. Browne, Sergei S. Pilyugin. Global analysis of age-structured within-host virus model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 1999-2017. doi: 10.3934/dcdsb.2013.18.1999

[8]

Xue-Zhi Li, Ji-Xuan Liu, Maia Martcheva. An age-structured two-strain epidemic model with super-infection. Mathematical Biosciences & Engineering, 2010, 7 (1) : 123-147. doi: 10.3934/mbe.2010.7.123

[9]

Toshikazu Kuniya, Mimmo Iannelli. $R_0$ and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission. Mathematical Biosciences & Engineering, 2014, 11 (4) : 929-945. doi: 10.3934/mbe.2014.11.929

[10]

Shaoli Wang, Jianhong Wu, Libin Rong. A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. Mathematical Biosciences & Engineering, 2017, 14 (3) : 805-820. doi: 10.3934/mbe.2017044

[11]

Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641

[12]

Ryszard Rudnicki, Radosław Wieczorek. On a nonlinear age-structured model of semelparous species. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2641-2656. doi: 10.3934/dcdsb.2014.19.2641

[13]

Mohammed Nor Frioui, Tarik Mohammed Touaoula, Bedreddine Ainseba. Global dynamics of an age-structured model with relapse. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019226

[14]

Georgi Kapitanov, Christina Alvey, Katia Vogt-Geisse, Zhilan Feng. An age-structured model for the coupled dynamics of HIV and HSV-2. Mathematical Biosciences & Engineering, 2015, 12 (4) : 803-840. doi: 10.3934/mbe.2015.12.803

[15]

Xichao Duan, Sanling Yuan, Kaifa Wang. Dynamics of a diffusive age-structured HBV model with saturating incidence. Mathematical Biosciences & Engineering, 2016, 13 (5) : 935-968. doi: 10.3934/mbe.2016024

[16]

Diène Ngom, A. Iggidir, Aboudramane Guiro, Abderrahim Ouahbi. An observer for a nonlinear age-structured model of a harvested fish population. Mathematical Biosciences & Engineering, 2008, 5 (2) : 337-354. doi: 10.3934/mbe.2008.5.337

[17]

Georgi Kapitanov. A double age-structured model of the co-infection of tuberculosis and HIV. Mathematical Biosciences & Engineering, 2015, 12 (1) : 23-40. doi: 10.3934/mbe.2015.12.23

[18]

A. Ducrot. Travelling wave solutions for a scalar age-structured equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 251-273. doi: 10.3934/dcdsb.2007.7.251

[19]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[20]

Folashade B. Agusto. Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of chikungunya virus. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 687-715. doi: 10.3934/dcdsb.2017034

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

[Back to Top]