2012, 9(3): 577-599. doi: 10.3934/mbe.2012.9.577

Multiple endemic states in age-structured $SIR$ epidemic models

1. 

Dept. Mathematics, Università di Trento, Via Sommarive 14, 38123 Povo (TN), Italy, Italy

2. 

Department of Mathematics and Computer Science, University of Udine, via delle Scienze 206, I33100 Udine

Received  June 2011 Revised  February 2012 Published  July 2012

$SIR$ age-structured models are very often used as a basic model of epidemic spread. Yet, their behaviour, under generic assumptions on contact rates between different age classes, is not completely known, and, in the most detailed analysis so far, Inaba (1990) was able to prove uniqueness of the endemic equilibrium only under a rather restrictive condition.
    Here, we show an example in the form of a $3 \times 3$ contact matrix in which multiple non-trivial steady states exist. This instance of non-uniqueness of positive equilibria differs from most existing ones for epidemic models, since it arises not from a backward transcritical bifurcation at the disease free equilibrium, but through two saddle-node bifurcations of the positive equilibrium. The dynamical behaviour of the model is analysed numerically around the range where multiple endemic equilibria exist; many other features are shown to occur, from coexistence of multiple attractive periodic solutions, some with extremely long period, to quasi-periodic and chaotic attractors.
    It is also shown that, if the contact rates are in the form of a $2 \times 2$ WAIFW matrix, uniqueness of non-trivial steady states always holds, so that 3 is the minimum dimension of the contact matrix to allow for multiple endemic equilibria.
Citation: Andrea Franceschetti, Andrea Pugliese, Dimitri Breda. Multiple endemic states in age-structured $SIR$ epidemic models. Mathematical Biosciences & Engineering, 2012, 9 (3) : 577-599. doi: 10.3934/mbe.2012.9.577
References:
[1]

R.M. Anderson and R.M. May, Vaccination against rubella and measles: Quantitative investigations of different policies,, J. Hyg. Camb., 90 (1983), 259.  doi: 10.1017/S002217240002893X.  Google Scholar

[2]

R.M. Anderson and R.M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford University Press, (1991).   Google Scholar

[3]

V.Andreasen, The effect of age-dependent host mortality on the dynamics of an endemic disease,, Math.Biosci., 114 (1993), 5.  doi: 10.1016/0025-5564(93)90041-8.  Google Scholar

[4]

V.Andreasen, Instability in an {SIR}-model with age dependent susceptibility,, in, 1 (1995), 3.   Google Scholar

[5]

D.Breda, M.Iannelli, S.Maset and R.Vermiglio, Stability analysis of the Gurtin-MacCamy model,, SIAM J. Numer. Anal., 46 (2008), 980.  doi: 10.1137/070685658.  Google Scholar

[6]

D.Breda and D.Visetti, Existence, multiplicity and stability of endemic states for an age-structured S-I epidemic model,, Math. Biosci., 235 (2012), 19.  doi: 10.1016/j.mbs.2011.10.004.  Google Scholar

[7]

S.Busenberg, K.Cooke and M.Iannelli, Endemic thresholds and stability in a class of age-structured epidemics,, SIAM J. Appl. Math., 48 (1988), 1379.  doi: 10.1137/0148085.  Google Scholar

[8]

J.M. Cushing, Robert Costantino, Brian Dennis, Robert Desharnais and S.Henson, "Chaos in Ecology: Experimental Nonlinear Dynamics,", Academic Press, (2002).   Google Scholar

[9]

K.Deimling, "Nonlinear Functional Analysis,", Springer Verlag, (1985).   Google Scholar

[10]

A.Franceschetti and A.Pugliese, Threshold behaviour of a SIR epidemic model with age structure and immigration,, J. Math. Biol., 57 (2008), 1.  doi: 10.1007/s00285-007-0143-1.  Google Scholar

[11]

D.Greenhalgh, Threshold and stability results for an epidemic model with an age structured meeting-rate,, IMA Journal of Mathematics applied in Medicine and Biology, 5 (1988), 81.  doi: 10.1093/imammb/5.2.81.  Google Scholar

[12]

H.Guo, M.Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Canadian Appl. Math. Quart., 14 (2006), 259.   Google Scholar

[13]

H. W. Hethcote and H. R. Thieme, Stability of the endemic equilibrium in epidemic models with subpopulations,, Math. Biosci., 75 (1985), 205.  doi: 10.1016/0025-5564(85)90038-0.  Google Scholar

[14]

M.Iannelli, "Mathematical Theory of Age-Structured Population Dynamics,", Giardini editori e stampatori in Pisa, (1994).   Google Scholar

[15]

H.Inaba, Threshold and stability results for an age-structured epidemic model,, Journal of Mathematical Biology, 28 (1990), 411.  doi: 10.1007/BF00178326.  Google Scholar

[16]

T.Kato, "Perturbation Theory for Linear Operators,", Die Grundlehren der mathematischen Wissenschaften, (1966).   Google Scholar

[17]

J.Mossong, N.Hens, M.Jit, P.Beutels, K.Auranen, R.Mikolajczyk, M.Massari, S.Salmaso, G.Scalia Tomba, J.Wallinga, J.Heijne, M.Sadkowska-Todys, M.Rosinska and W.J. Edmunds, Social contacts and mixing patterns relevant to the spread of infectious diseases,, PlOS Medicine, 5 (2008), 381.  doi: 10.1371/journal.pmed.0050074.  Google Scholar

[18]

H. R. Thieme, Stability change of the endemic equilibrium in age-structured models for the spread of SIR type infectious diseases,, in, 92 (1991), 139.   Google Scholar

[19]

E.Zeidler, "Nonlinear Functional Analysis and its Applications. I. Fixed Point Theorems,", Springer-Verlag, (1986).   Google Scholar

show all references

References:
[1]

R.M. Anderson and R.M. May, Vaccination against rubella and measles: Quantitative investigations of different policies,, J. Hyg. Camb., 90 (1983), 259.  doi: 10.1017/S002217240002893X.  Google Scholar

[2]

R.M. Anderson and R.M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford University Press, (1991).   Google Scholar

[3]

V.Andreasen, The effect of age-dependent host mortality on the dynamics of an endemic disease,, Math.Biosci., 114 (1993), 5.  doi: 10.1016/0025-5564(93)90041-8.  Google Scholar

[4]

V.Andreasen, Instability in an {SIR}-model with age dependent susceptibility,, in, 1 (1995), 3.   Google Scholar

[5]

D.Breda, M.Iannelli, S.Maset and R.Vermiglio, Stability analysis of the Gurtin-MacCamy model,, SIAM J. Numer. Anal., 46 (2008), 980.  doi: 10.1137/070685658.  Google Scholar

[6]

D.Breda and D.Visetti, Existence, multiplicity and stability of endemic states for an age-structured S-I epidemic model,, Math. Biosci., 235 (2012), 19.  doi: 10.1016/j.mbs.2011.10.004.  Google Scholar

[7]

S.Busenberg, K.Cooke and M.Iannelli, Endemic thresholds and stability in a class of age-structured epidemics,, SIAM J. Appl. Math., 48 (1988), 1379.  doi: 10.1137/0148085.  Google Scholar

[8]

J.M. Cushing, Robert Costantino, Brian Dennis, Robert Desharnais and S.Henson, "Chaos in Ecology: Experimental Nonlinear Dynamics,", Academic Press, (2002).   Google Scholar

[9]

K.Deimling, "Nonlinear Functional Analysis,", Springer Verlag, (1985).   Google Scholar

[10]

A.Franceschetti and A.Pugliese, Threshold behaviour of a SIR epidemic model with age structure and immigration,, J. Math. Biol., 57 (2008), 1.  doi: 10.1007/s00285-007-0143-1.  Google Scholar

[11]

D.Greenhalgh, Threshold and stability results for an epidemic model with an age structured meeting-rate,, IMA Journal of Mathematics applied in Medicine and Biology, 5 (1988), 81.  doi: 10.1093/imammb/5.2.81.  Google Scholar

[12]

H.Guo, M.Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Canadian Appl. Math. Quart., 14 (2006), 259.   Google Scholar

[13]

H. W. Hethcote and H. R. Thieme, Stability of the endemic equilibrium in epidemic models with subpopulations,, Math. Biosci., 75 (1985), 205.  doi: 10.1016/0025-5564(85)90038-0.  Google Scholar

[14]

M.Iannelli, "Mathematical Theory of Age-Structured Population Dynamics,", Giardini editori e stampatori in Pisa, (1994).   Google Scholar

[15]

H.Inaba, Threshold and stability results for an age-structured epidemic model,, Journal of Mathematical Biology, 28 (1990), 411.  doi: 10.1007/BF00178326.  Google Scholar

[16]

T.Kato, "Perturbation Theory for Linear Operators,", Die Grundlehren der mathematischen Wissenschaften, (1966).   Google Scholar

[17]

J.Mossong, N.Hens, M.Jit, P.Beutels, K.Auranen, R.Mikolajczyk, M.Massari, S.Salmaso, G.Scalia Tomba, J.Wallinga, J.Heijne, M.Sadkowska-Todys, M.Rosinska and W.J. Edmunds, Social contacts and mixing patterns relevant to the spread of infectious diseases,, PlOS Medicine, 5 (2008), 381.  doi: 10.1371/journal.pmed.0050074.  Google Scholar

[18]

H. R. Thieme, Stability change of the endemic equilibrium in age-structured models for the spread of SIR type infectious diseases,, in, 92 (1991), 139.   Google Scholar

[19]

E.Zeidler, "Nonlinear Functional Analysis and its Applications. I. Fixed Point Theorems,", Springer-Verlag, (1986).   Google Scholar

[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[3]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[4]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[7]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[8]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[9]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[10]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[11]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[12]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[13]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[14]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[15]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[16]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[17]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[18]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[19]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[20]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (11)

[Back to Top]