2012, 9(3): 601-625. doi: 10.3934/mbe.2012.9.601

Modeling the effects of introducing a new antibiotic in a hospital setting: A case study

1. 

Department of Mathematics & Statistics and Institute for Quantitative Biology, East Tennessee State University, Johnson City, TN, 37659, United States

2. 

Department of Mathematics and Computer Science, Meredith College, Raleigh, NC, 27607, United States

3. 

Department of Mathematics & Statistics and Institute for Quantitative Biology, East Tennessee State University, Johnson City, TN, United States

Received  August 2011 Revised  March 2012 Published  July 2012

The increase in antibiotic resistance continues to pose a public health risk as very few new antibiotics are being produced, and bacteria resistant to currently prescribed antibiotics is growing. Within a typical hospital setting, one may find patients colonized with bacteria resistant to a single antibiotic, or, of a more emergent threat, patients may be colonized with bacteria resistant to multiple antibiotics. Precautions have been implemented to try to prevent the growth and spread of antimicrobial resistance such as a reduction in the distribution of antibiotics and increased hand washing and barrier preventions; however, the rise of this resistance is still evident. As a result, there is a new movement to try to re-examine the need for the development of new antibiotics. In this paper, we use mathematical models to study the possible benefits of implementing a new antibiotic in this setting; through these models, we examine the use of a new antibiotic that is distributed in various ways and how this could reduce total resistance in the hospital. We compare several different models in which patients colonized with both single and dual-resistant bacteria are present, including a model with no additional treatment protocols for the population colonized with dual-resistant bacteria as well as models including isolation and/or treatment with a new antibiotic. We examine the benefits and limitations of each scenario in the simulations presented.
Citation: Michele L. Joyner, Cammey C. Manning, Brandi N. Canter. Modeling the effects of introducing a new antibiotic in a hospital setting: A case study. Mathematical Biosciences & Engineering, 2012, 9 (3) : 601-625. doi: 10.3934/mbe.2012.9.601
References:
[1]

Alberto Sandiumenge, Emili Diaz, Alejandro Rodriguez, Loreto Vidaur, Laura Canadell, Montserrat Olona, Montserrat Rue and Jordi Rello, Impact of diversity of antibiotic use on the development of antimicrobial resistance,, Journal of Antimicrobial Chemotherapy, 57 (2006), 1197.  doi: 10.1093/jac/dkl097.  Google Scholar

[2]

Alfonso J. Alanis, Resistance to antibiotics: Are we in the post-antibiotic era?,, Archives of Medical Research, 36 (2005), 697.  doi: 10.1016/j.arcmed.2005.06.009.  Google Scholar

[3]

Bruce R. Levin and Klas I. Udekwu, Population dynamics of antibiotic treatment: A mathematical model and hypotheses for time-kill and continuous-culture experiments,, Antimicrobial Agents and Chemotherapy, 54 (2010), 3414.  doi: 10.1128/AAC.00381-10.  Google Scholar

[4]

B. R. Levin, M. Lipsitch, V. Perrot, S. Schrag, R. Antia, L. Simonsen and N. Moore, The population genetics of antibiotic resistance,, Clinical Infectious Diseases, 24 (1997).  doi: 10.1093/clinids/24.Supplement_1.S9.  Google Scholar

[5]

Carl T. Bergstrom, Monique Lo and Marc Lipsitch, Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals,, PNAS, 101 (2004), 13285.  doi: 10.1073/pnas.0402298101.  Google Scholar

[6]

Christophe Fraser, Steven Riley, Roy M. Anderson and Neil M. Ferguson, Factors that make an infectious disease outbreak controllable,, PNAS, 101 (2004), 6146.  doi: 10.1073/pnas.0307506101.  Google Scholar

[7]

Csaba Pal, Maria D. Macia, Antonio Oliver, Ira Schachar and Angus Buckling, Coevolution with viruses drives the evolution of bacterial mutation rates,, Nature, 450 (2007), 1079.  doi: 10.1038/nature06350.  Google Scholar

[8]

D. M. Hamby, A review of techniques for parameter sensitivity analysis of environmental models,, Environmental Monitoring and Assessment, 32 (1994), 135.  doi: 10.1007/BF00547132.  Google Scholar

[9]

Dale N. Gerding, Tom A. Larson, Rita A. Hughes, Mary Weiler, Carol Shanholtzer and Lance R. Peterson, Aminoglycoside resistance and aminoglycoside usage: Ten years of experience in one hospital,, Antimicrobial Agents and Chemotherapy, (1991), 1284.   Google Scholar

[10]

Dan I. Andersson and Bruce R. Levin, The biological cost of antibiotic resistance,, Current Opinion in Microbiology, 2 (1999), 489.   Google Scholar

[11]

David M. Shlaes, Dale N. Gerding, Joseph F. John Jr., William A. Craig, Donald L. Bornstein, Robert A. Duncan, Mark R. Eckman, William E. Farrer, William H. Greene, Victor Lorian, Stuart Levy, John E. McGowan Jr., Sindy M. Paul, Joel Ruskin, Fred C. Tenover and Chatrchai Watanakunakorn, Society for healthcare epidemiology of America joint committee on the prevention of antimicrobial resistance: Guidelines for prevention of antimicrobial resistance in hospitals,, Clinical Infectious Diseases, 25 (1997), 584.  doi: 10.1086/513766.  Google Scholar

[12]

D. J. Austin and K. G. Kristinsson and R. M. Anderson, The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance,, PNAS, 96 (1999), 1152.  doi: 10.1073/pnas.96.3.1152.  Google Scholar

[13]

D. J. Austin, M. Kakehashi and R. M. Anderson, The transmission dynamics of antibiotic-resistant bacteria: The relationship between resistance in commensal organisms and antibiotic consumption,, Proceedings: Biological Sciences, 264 (1997), 1629.  doi: 10.1098/rspb.1997.0227.  Google Scholar

[14]

Eduardo Massad, Marcelo N. Burattini and Francisco A. B. Coutinho, An optimization model for antibiotic use,, Applied Mathematics and Computation, 201 (2008), 161.  doi: 10.1016/j.amc.2007.12.007.  Google Scholar

[15]

Elaine S. Walker and Foster Levy, Genetic trends in population evolving antibiotic resistance,, Evolution, 55 (2001), 1110.   Google Scholar

[16]

Erika M. C. D'Agata, Pierre Magal, Damien Olivier, Shigui Ruan and Glenn F. Webb, Modeling antibiotic resistance in hospitals: The impact of minimizing duration treatment,, Journal of Theoretical Biology, 249 (2007), 487.  doi: 10.1016/j.jtbi.2007.08.011.  Google Scholar

[17]

F. D. Pien and W. K. K. Lau and N. Sur, Antibiotic use in a small community hospital,, West J. Med., 130 (1979), 498.   Google Scholar

[18]

Glenn F. Webb, Erika M. C. D'Agata, Pierre Magal and Shigui Ruan, A model of antibiotic-resistant bacterial epidemics,, PNAS, 102 (2005), 13343.  doi: 10.1073/pnas.0504053102.  Google Scholar

[19]

Harald J. van Loon, Menno R. Vriens, Ad C. Fluit, Annet Troelstra, Christiaan van der Werken, Jan Verhoef and Marc J. M. Bonten, Antibiotic rotation and development of gram-negative antibiotic resistance,, American Journal Respiratory Critical Care Medicine, 171 (2005), 480.  doi: 10.1164/rccm.200401-070OC.  Google Scholar

[20]

Inti Pelupessy, Mac J. M. Bonten and Odo Diekmann, How to assess the relative importance of different colonization routes of pathogens within hospital settings,, PNAS, 99 (2002), 5601.  doi: 10.1073/pnas.082412899.  Google Scholar

[21]

Jesus Silva, Mechanisms of antibiotic resistance,, Current Therapeutic Research, 57 (1996), 30.  doi: 10.1016/S0011-393X(96)80095-6.  Google Scholar

[22]

Jesus Blazquez, Antonio Oliver and Jose-Maria Gomez-Gomez, Mutation and evolution of antibiotic resistance: Antibiotics as promoters of antibiotic resistance?,, Current Drug Targets, 3 (2002), 345.   Google Scholar

[23]

J. L. Martinez and F. Baquero, Mutation frequencies and antibiotic resistance,, Antimicrobial Agents and Chemotherapy, 44 (2000), 1771.  doi: 10.1128/AAC.44.7.1771-1777.2000.  Google Scholar

[24]

Jose-Antonio Martinez, Josep-Maria Nicolas, Francesc Marco, Juan-Pablo Horcajada, Gloria Garcia-Segarra, Antoni Trilla, Carles Codina, Antoni Torres and Josep Mensa, Comparison of antimicrobial cycling and mixing strategies in two medical intensive care units,, Critical Care Medicine, 34 (2006), 329.  doi: 10.1097/01.CCM.0000195010.63855.45.  Google Scholar

[25]

Karen Chow, Xiaohong Wang, R. Curtiss III and Carlos Castillo-Chavez, Evaluating the efficacy of antimicrobial cycling programmes and patient isolation on dual resistance in hospitals,, Journal of Biological Dynamics, 5 (2010), 27.   Google Scholar

[26]

Marc Lipsitch, Carl T. Bergstrom and Bruce R. Levin, The epidemiology of antibiotic resistance in hospitals: Paradoxes and prescriptions,, PNAS, 97 (2000), 1938.  doi: 10.1073/pnas.97.4.1938.  Google Scholar

[27]

Marc Lipsitch and Matthew H. Samore, Antimicrobial use and antimicrobial resistance: A population perspective,, Emerging Infectious Diseases, 8 (2002), 347.   Google Scholar

[28]

Michael Haber, Bruce R. Levin and Piotr Kramarz, Antibiotic control of antibiotic resistance in hospitals: A simulation study,, BMC Infectious Diseases, 10 (2010).  doi: 10.1186/1471-2334-10-254.  Google Scholar

[29]

Michael B. Rothberg, Penelope S. Pekow, Maureen Lahti, Oren Brody, Daniel J. Skiest and Peter K. Lindenauer, Antibiotic therapy and treatment failure in patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease,, JAMA, 303 (2010), 2035.  doi: 10.1001/jama.2010.672.  Google Scholar

[30]

P. van den Driessche and James Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[31]

Richard E. Lenski, Bacterial evolution and the cost of antibiotic resistance,, International Microbiology, 1 (1998), 265.   Google Scholar

[32]

Robert F. Betts, William M. Valenti, Stanley W. Chapman, Tasnee Chonmaitree, Gail Mowrer, Patricia Pincus, Marjorie Messner and Richard Robertson, Five-year surveillance of aminoglycoside usage in a university hospital,, Antimicrobial Agents and Chemotherapy, 100 (1984), 219.   Google Scholar

[33]

Sebastian Bonhoeffer, Marc Lipsitch and Bruce R. Levin, Evaluating treatment protocols to prevent antibiotic resistance,, PNAS, 94 (1997), 12106.  doi: 10.1073/pnas.94.22.12106.  Google Scholar

[34]

William J. Moss, M. Claire Beers, Elizabeth Johnson, David G. Nichols, Trish M. Perl, James D. Dick, Michael A. Veltri and Rodney E. Willoughby Jr., Pilot study of antibiotic cycling in a pediatric intensive care unit,, Critical Care Medicine, 30 (2002), 1877.  doi: 10.1097/00003246-200208000-00034.  Google Scholar

[35]

Y. Claire Wang and Marc Lipsitch, Upgrading antibiotic use within a class: Tradeoff between resistance and treatment success,, PNAS, 103 (2006), 9655.  doi: 10.1073/pnas.0600636103.  Google Scholar

show all references

References:
[1]

Alberto Sandiumenge, Emili Diaz, Alejandro Rodriguez, Loreto Vidaur, Laura Canadell, Montserrat Olona, Montserrat Rue and Jordi Rello, Impact of diversity of antibiotic use on the development of antimicrobial resistance,, Journal of Antimicrobial Chemotherapy, 57 (2006), 1197.  doi: 10.1093/jac/dkl097.  Google Scholar

[2]

Alfonso J. Alanis, Resistance to antibiotics: Are we in the post-antibiotic era?,, Archives of Medical Research, 36 (2005), 697.  doi: 10.1016/j.arcmed.2005.06.009.  Google Scholar

[3]

Bruce R. Levin and Klas I. Udekwu, Population dynamics of antibiotic treatment: A mathematical model and hypotheses for time-kill and continuous-culture experiments,, Antimicrobial Agents and Chemotherapy, 54 (2010), 3414.  doi: 10.1128/AAC.00381-10.  Google Scholar

[4]

B. R. Levin, M. Lipsitch, V. Perrot, S. Schrag, R. Antia, L. Simonsen and N. Moore, The population genetics of antibiotic resistance,, Clinical Infectious Diseases, 24 (1997).  doi: 10.1093/clinids/24.Supplement_1.S9.  Google Scholar

[5]

Carl T. Bergstrom, Monique Lo and Marc Lipsitch, Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals,, PNAS, 101 (2004), 13285.  doi: 10.1073/pnas.0402298101.  Google Scholar

[6]

Christophe Fraser, Steven Riley, Roy M. Anderson and Neil M. Ferguson, Factors that make an infectious disease outbreak controllable,, PNAS, 101 (2004), 6146.  doi: 10.1073/pnas.0307506101.  Google Scholar

[7]

Csaba Pal, Maria D. Macia, Antonio Oliver, Ira Schachar and Angus Buckling, Coevolution with viruses drives the evolution of bacterial mutation rates,, Nature, 450 (2007), 1079.  doi: 10.1038/nature06350.  Google Scholar

[8]

D. M. Hamby, A review of techniques for parameter sensitivity analysis of environmental models,, Environmental Monitoring and Assessment, 32 (1994), 135.  doi: 10.1007/BF00547132.  Google Scholar

[9]

Dale N. Gerding, Tom A. Larson, Rita A. Hughes, Mary Weiler, Carol Shanholtzer and Lance R. Peterson, Aminoglycoside resistance and aminoglycoside usage: Ten years of experience in one hospital,, Antimicrobial Agents and Chemotherapy, (1991), 1284.   Google Scholar

[10]

Dan I. Andersson and Bruce R. Levin, The biological cost of antibiotic resistance,, Current Opinion in Microbiology, 2 (1999), 489.   Google Scholar

[11]

David M. Shlaes, Dale N. Gerding, Joseph F. John Jr., William A. Craig, Donald L. Bornstein, Robert A. Duncan, Mark R. Eckman, William E. Farrer, William H. Greene, Victor Lorian, Stuart Levy, John E. McGowan Jr., Sindy M. Paul, Joel Ruskin, Fred C. Tenover and Chatrchai Watanakunakorn, Society for healthcare epidemiology of America joint committee on the prevention of antimicrobial resistance: Guidelines for prevention of antimicrobial resistance in hospitals,, Clinical Infectious Diseases, 25 (1997), 584.  doi: 10.1086/513766.  Google Scholar

[12]

D. J. Austin and K. G. Kristinsson and R. M. Anderson, The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance,, PNAS, 96 (1999), 1152.  doi: 10.1073/pnas.96.3.1152.  Google Scholar

[13]

D. J. Austin, M. Kakehashi and R. M. Anderson, The transmission dynamics of antibiotic-resistant bacteria: The relationship between resistance in commensal organisms and antibiotic consumption,, Proceedings: Biological Sciences, 264 (1997), 1629.  doi: 10.1098/rspb.1997.0227.  Google Scholar

[14]

Eduardo Massad, Marcelo N. Burattini and Francisco A. B. Coutinho, An optimization model for antibiotic use,, Applied Mathematics and Computation, 201 (2008), 161.  doi: 10.1016/j.amc.2007.12.007.  Google Scholar

[15]

Elaine S. Walker and Foster Levy, Genetic trends in population evolving antibiotic resistance,, Evolution, 55 (2001), 1110.   Google Scholar

[16]

Erika M. C. D'Agata, Pierre Magal, Damien Olivier, Shigui Ruan and Glenn F. Webb, Modeling antibiotic resistance in hospitals: The impact of minimizing duration treatment,, Journal of Theoretical Biology, 249 (2007), 487.  doi: 10.1016/j.jtbi.2007.08.011.  Google Scholar

[17]

F. D. Pien and W. K. K. Lau and N. Sur, Antibiotic use in a small community hospital,, West J. Med., 130 (1979), 498.   Google Scholar

[18]

Glenn F. Webb, Erika M. C. D'Agata, Pierre Magal and Shigui Ruan, A model of antibiotic-resistant bacterial epidemics,, PNAS, 102 (2005), 13343.  doi: 10.1073/pnas.0504053102.  Google Scholar

[19]

Harald J. van Loon, Menno R. Vriens, Ad C. Fluit, Annet Troelstra, Christiaan van der Werken, Jan Verhoef and Marc J. M. Bonten, Antibiotic rotation and development of gram-negative antibiotic resistance,, American Journal Respiratory Critical Care Medicine, 171 (2005), 480.  doi: 10.1164/rccm.200401-070OC.  Google Scholar

[20]

Inti Pelupessy, Mac J. M. Bonten and Odo Diekmann, How to assess the relative importance of different colonization routes of pathogens within hospital settings,, PNAS, 99 (2002), 5601.  doi: 10.1073/pnas.082412899.  Google Scholar

[21]

Jesus Silva, Mechanisms of antibiotic resistance,, Current Therapeutic Research, 57 (1996), 30.  doi: 10.1016/S0011-393X(96)80095-6.  Google Scholar

[22]

Jesus Blazquez, Antonio Oliver and Jose-Maria Gomez-Gomez, Mutation and evolution of antibiotic resistance: Antibiotics as promoters of antibiotic resistance?,, Current Drug Targets, 3 (2002), 345.   Google Scholar

[23]

J. L. Martinez and F. Baquero, Mutation frequencies and antibiotic resistance,, Antimicrobial Agents and Chemotherapy, 44 (2000), 1771.  doi: 10.1128/AAC.44.7.1771-1777.2000.  Google Scholar

[24]

Jose-Antonio Martinez, Josep-Maria Nicolas, Francesc Marco, Juan-Pablo Horcajada, Gloria Garcia-Segarra, Antoni Trilla, Carles Codina, Antoni Torres and Josep Mensa, Comparison of antimicrobial cycling and mixing strategies in two medical intensive care units,, Critical Care Medicine, 34 (2006), 329.  doi: 10.1097/01.CCM.0000195010.63855.45.  Google Scholar

[25]

Karen Chow, Xiaohong Wang, R. Curtiss III and Carlos Castillo-Chavez, Evaluating the efficacy of antimicrobial cycling programmes and patient isolation on dual resistance in hospitals,, Journal of Biological Dynamics, 5 (2010), 27.   Google Scholar

[26]

Marc Lipsitch, Carl T. Bergstrom and Bruce R. Levin, The epidemiology of antibiotic resistance in hospitals: Paradoxes and prescriptions,, PNAS, 97 (2000), 1938.  doi: 10.1073/pnas.97.4.1938.  Google Scholar

[27]

Marc Lipsitch and Matthew H. Samore, Antimicrobial use and antimicrobial resistance: A population perspective,, Emerging Infectious Diseases, 8 (2002), 347.   Google Scholar

[28]

Michael Haber, Bruce R. Levin and Piotr Kramarz, Antibiotic control of antibiotic resistance in hospitals: A simulation study,, BMC Infectious Diseases, 10 (2010).  doi: 10.1186/1471-2334-10-254.  Google Scholar

[29]

Michael B. Rothberg, Penelope S. Pekow, Maureen Lahti, Oren Brody, Daniel J. Skiest and Peter K. Lindenauer, Antibiotic therapy and treatment failure in patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease,, JAMA, 303 (2010), 2035.  doi: 10.1001/jama.2010.672.  Google Scholar

[30]

P. van den Driessche and James Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[31]

Richard E. Lenski, Bacterial evolution and the cost of antibiotic resistance,, International Microbiology, 1 (1998), 265.   Google Scholar

[32]

Robert F. Betts, William M. Valenti, Stanley W. Chapman, Tasnee Chonmaitree, Gail Mowrer, Patricia Pincus, Marjorie Messner and Richard Robertson, Five-year surveillance of aminoglycoside usage in a university hospital,, Antimicrobial Agents and Chemotherapy, 100 (1984), 219.   Google Scholar

[33]

Sebastian Bonhoeffer, Marc Lipsitch and Bruce R. Levin, Evaluating treatment protocols to prevent antibiotic resistance,, PNAS, 94 (1997), 12106.  doi: 10.1073/pnas.94.22.12106.  Google Scholar

[34]

William J. Moss, M. Claire Beers, Elizabeth Johnson, David G. Nichols, Trish M. Perl, James D. Dick, Michael A. Veltri and Rodney E. Willoughby Jr., Pilot study of antibiotic cycling in a pediatric intensive care unit,, Critical Care Medicine, 30 (2002), 1877.  doi: 10.1097/00003246-200208000-00034.  Google Scholar

[35]

Y. Claire Wang and Marc Lipsitch, Upgrading antibiotic use within a class: Tradeoff between resistance and treatment success,, PNAS, 103 (2006), 9655.  doi: 10.1073/pnas.0600636103.  Google Scholar

[1]

Shu Liao, Jin Wang. Stability analysis and application of a mathematical cholera model. Mathematical Biosciences & Engineering, 2011, 8 (3) : 733-752. doi: 10.3934/mbe.2011.8.733

[2]

Kamaldeen Okuneye, Ahmed Abdelrazec, Abba B. Gumel. Mathematical analysis of a weather-driven model for the population ecology of mosquitoes. Mathematical Biosciences & Engineering, 2018, 15 (1) : 57-93. doi: 10.3934/mbe.2018003

[3]

José Ignacio Tello. Mathematical analysis of a model of morphogenesis. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 343-361. doi: 10.3934/dcds.2009.25.343

[4]

Xianlong Fu, Dongmei Zhu. Stability analysis for a size-structured juvenile-adult population model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 391-417. doi: 10.3934/dcdsb.2014.19.391

[5]

Bashar Ibrahim. Mathematical analysis and modeling of DNA segregation mechanisms. Mathematical Biosciences & Engineering, 2018, 15 (2) : 429-440. doi: 10.3934/mbe.2018019

[6]

Hamed Azizollahi, Marion Darbas, Mohamadou M. Diallo, Abdellatif El Badia, Stephanie Lohrengel. EEG in neonates: Forward modeling and sensitivity analysis with respect to variations of the conductivity. Mathematical Biosciences & Engineering, 2018, 15 (4) : 905-932. doi: 10.3934/mbe.2018041

[7]

Kimberly Fessel, Jeffrey B. Gaither, Julie K. Bower, Trudy Gaillard, Kwame Osei, Grzegorz A. Rempała. Mathematical analysis of a model for glucose regulation. Mathematical Biosciences & Engineering, 2016, 13 (1) : 83-99. doi: 10.3934/mbe.2016.13.83

[8]

Shangbin Cui, Meng Bai. Mathematical analysis of population migration and its effects to spread of epidemics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2819-2858. doi: 10.3934/dcdsb.2015.20.2819

[9]

Loïc Louison, Abdennebi Omrane, Harry Ozier-Lafontaine, Delphine Picart. Modeling plant nutrient uptake: Mathematical analysis and optimal control. Evolution Equations & Control Theory, 2015, 4 (2) : 193-203. doi: 10.3934/eect.2015.4.193

[10]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[11]

Ismail Abdulrashid, Abdallah A. M. Alsammani, Xiaoying Han. Stability analysis of a chemotherapy model with delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 989-1005. doi: 10.3934/dcdsb.2019002

[12]

Isabelle Gallagher. A mathematical review of the analysis of the betaplane model and equatorial waves. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 461-480. doi: 10.3934/dcdss.2008.1.461

[13]

Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035

[14]

Carole Guillevin, Rémy Guillevin, Alain Miranville, Angélique Perrillat-Mercerot. Analysis of a mathematical model for brain lactate kinetics. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1225-1242. doi: 10.3934/mbe.2018056

[15]

Oanh Chau, R. Oujja, Mohamed Rochdi. A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 61-70. doi: 10.3934/dcdss.2008.1.61

[16]

Yu-Hsien Chang, Guo-Chin Jau. The behavior of the solution for a mathematical model for analysis of the cell cycle. Communications on Pure & Applied Analysis, 2006, 5 (4) : 779-792. doi: 10.3934/cpaa.2006.5.779

[17]

Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś. Gompertz model with delays and treatment: Mathematical analysis. Mathematical Biosciences & Engineering, 2013, 10 (3) : 551-563. doi: 10.3934/mbe.2013.10.551

[18]

Messoud Efendiev, Mitsuharu Ôtani, Hermann J. Eberl. Mathematical analysis of an in vivo model of mitochondrial swelling. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4131-4158. doi: 10.3934/dcds.2017176

[19]

Mostafa Bendahmane, Fatima Mroue, Mazen Saad, Raafat Talhouk. Mathematical analysis of cardiac electromechanics with physiological ionic model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4863-4897. doi: 10.3934/dcdsb.2019035

[20]

Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217-235. doi: 10.3934/mbe.2017014

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

[Back to Top]