2012, 9(3): 627-645. doi: 10.3934/mbe.2012.9.627

The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat

1. 

Irstea, UMR ITAP, 361 rue Jean-François Breton 34196 Montpellier, & Modemic (Inra/Inria), UMR Mistea, 2 place Viala, 34060 Montpellier, France

2. 

ISSATSO (Université de Sousse) Cité Taffala, 4003 Sousse, & LAMSIN-ENIT, Université Tunis El-manar BP 37, 1002 Tunis, Tunisia

3. 

INRA UR0050, Laboratoire de Biotechnologie de l’Environnement, Avenue des Étangs, 11100 Narbonne, and Modemic (Inra/Inria), UMR Mistea, 2 place Viala, 34060 Montpellier, France

Received  November 2011 Revised  April 2012 Published  July 2012

A mathematical model involving a syntrophic relationship between two populations of bacteria in a continuous culture is proposed. A detailed qualitative analysis is carried out as well as the analysis of the local and global stability of the equilibria. We demonstrate, under general assumptions of monotonicity which are relevant from an applied point of view, the asymptotic stability of the positive equilibrium point which corresponds to the coexistence of the two bacteria. A syntrophic relationship in the anaerobic digestion process is proposed as a real candidate for this model.
Citation: Tewfik Sari, Miled El Hajji, Jérôme Harmand. The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat. Mathematical Biosciences & Engineering, 2012, 9 (3) : 627-645. doi: 10.3934/mbe.2012.9.627
References:
[1]

Y. Aota and H. Nakajima, Mutualistic relationships between phytoplankton and bacteria caused by carbon excretion from phytoplankton,, Ecological Research, 16 (2001), 289. doi: 10.1046/j.1440-1703.2001.00396.x. Google Scholar

[2]

M. M. Ballyk and G. S. K. Wolkowicz, Classical and resource-based competition: A unifying graphical approach,, J. Math. Biol., 62 (2011), 81. doi: 10.1007/s00285-010-0328-x. Google Scholar

[3]

G. Bratbak and T. F. Thingstad, Phytoplankton-bacteria interactions: An apparent paradox? Analysis of a model system with both competition and commensalism,, Ecological Research, 25 (1985), 23. Google Scholar

[4]

M. P. Bryant, E. A. Wolin, M. J. Wolin and R. S. Wolfe, Methanobacillus omelianskii, a symbiotic association of two species of bacteria,, Arch. Microbiol., 59 (1967), 20. Google Scholar

[5]

J. Chase and M. Leibold, "Ecological Niches - Linking Classical and Contemporary Approaches,", The University of Chicago Press, (2003). Google Scholar

[6]

M. El Hajji, J. Harmand, H. Chaker and C. Lobry, Association between competition and obligate mutualism in a chemostat,, J. Biol. Dynamics, 3 (2009), 635. Google Scholar

[7]

M. El Hajji, F. Mazenc and J. Harmand, A mathematical study of a syntrophic relationship of a model of anaerobic digestion process,, Math. Biosci. Eng., 7 (2010), 641. Google Scholar

[8]

M. El Hajji and A. Rapaport, Practical coexistence of two species in the chemostat-A slow-fast characterization,, Math. Biosci., 218 (2009), 33. Google Scholar

[9]

M. El Hajji, T. Sari and J. Harmand, Analyse d'un relation syntrophique: Cas d'un chemostat,, in, (2011), 23. Google Scholar

[10]

H. I. Freedman, R. Kumar, A. K. Easton and M. Singh, Mathematical models of predator mutualists,, Canadian Appl. Math. Quart., 9 (2001), 99. Google Scholar

[11]

C. Katsuyama, S. Nakaoka, Y. Takeuchi, K. Tago, M. Hayatsu and K. Kato, A mathematical model of syntrophic cocultures in the chemostat,, J. Theor. Biol., 256 (2009), 644. Google Scholar

[12]

R. Kreikenbohm and E. Bohl, A mathematical model of syntrophic cocultures in the chemostat,, FEMS Microbiol. Ecol., 38 (1986), 131. Google Scholar

[13]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995). Google Scholar

[14]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755. Google Scholar

[15]

The IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment, Activated sludge models ASM1, ASM2, ASM2d and ASM3,, Scientific and Technical Report No. 9, (2000). Google Scholar

show all references

References:
[1]

Y. Aota and H. Nakajima, Mutualistic relationships between phytoplankton and bacteria caused by carbon excretion from phytoplankton,, Ecological Research, 16 (2001), 289. doi: 10.1046/j.1440-1703.2001.00396.x. Google Scholar

[2]

M. M. Ballyk and G. S. K. Wolkowicz, Classical and resource-based competition: A unifying graphical approach,, J. Math. Biol., 62 (2011), 81. doi: 10.1007/s00285-010-0328-x. Google Scholar

[3]

G. Bratbak and T. F. Thingstad, Phytoplankton-bacteria interactions: An apparent paradox? Analysis of a model system with both competition and commensalism,, Ecological Research, 25 (1985), 23. Google Scholar

[4]

M. P. Bryant, E. A. Wolin, M. J. Wolin and R. S. Wolfe, Methanobacillus omelianskii, a symbiotic association of two species of bacteria,, Arch. Microbiol., 59 (1967), 20. Google Scholar

[5]

J. Chase and M. Leibold, "Ecological Niches - Linking Classical and Contemporary Approaches,", The University of Chicago Press, (2003). Google Scholar

[6]

M. El Hajji, J. Harmand, H. Chaker and C. Lobry, Association between competition and obligate mutualism in a chemostat,, J. Biol. Dynamics, 3 (2009), 635. Google Scholar

[7]

M. El Hajji, F. Mazenc and J. Harmand, A mathematical study of a syntrophic relationship of a model of anaerobic digestion process,, Math. Biosci. Eng., 7 (2010), 641. Google Scholar

[8]

M. El Hajji and A. Rapaport, Practical coexistence of two species in the chemostat-A slow-fast characterization,, Math. Biosci., 218 (2009), 33. Google Scholar

[9]

M. El Hajji, T. Sari and J. Harmand, Analyse d'un relation syntrophique: Cas d'un chemostat,, in, (2011), 23. Google Scholar

[10]

H. I. Freedman, R. Kumar, A. K. Easton and M. Singh, Mathematical models of predator mutualists,, Canadian Appl. Math. Quart., 9 (2001), 99. Google Scholar

[11]

C. Katsuyama, S. Nakaoka, Y. Takeuchi, K. Tago, M. Hayatsu and K. Kato, A mathematical model of syntrophic cocultures in the chemostat,, J. Theor. Biol., 256 (2009), 644. Google Scholar

[12]

R. Kreikenbohm and E. Bohl, A mathematical model of syntrophic cocultures in the chemostat,, FEMS Microbiol. Ecol., 38 (1986), 131. Google Scholar

[13]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995). Google Scholar

[14]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755. Google Scholar

[15]

The IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment, Activated sludge models ASM1, ASM2, ASM2d and ASM3,, Scientific and Technical Report No. 9, (2000). Google Scholar

[1]

Miled El Hajji, Frédéric Mazenc, Jérôme Harmand. A mathematical study of a syntrophic relationship of a model of anaerobic digestion process. Mathematical Biosciences & Engineering, 2010, 7 (3) : 641-656. doi: 10.3934/mbe.2010.7.641

[2]

Marion Weedermann. Analysis of a model for the effects of an external toxin on anaerobic digestion. Mathematical Biosciences & Engineering, 2012, 9 (2) : 445-459. doi: 10.3934/mbe.2012.9.445

[3]

Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823

[4]

Zhiqi Lu. Global stability for a chemostat-type model with delayed nutrient recycling. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 663-670. doi: 10.3934/dcdsb.2004.4.663

[5]

Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences & Engineering, 2016, 13 (4) : 631-652. doi: 10.3934/mbe.2016012

[6]

Willard S. Keeran, Patrick D. Leenheer, Sergei S. Pilyugin. Feedback-mediated coexistence and oscillations in the chemostat. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 321-351. doi: 10.3934/dcdsb.2008.9.321

[7]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[8]

Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255

[9]

Christian Lax, Sebastian Walcher. A note on global asymptotic stability of nonautonomous master equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2143-2149. doi: 10.3934/dcdsb.2013.18.2143

[10]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019212

[11]

Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319

[12]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[13]

Shiwang Ma, Xiao-Qiang Zhao. Global asymptotic stability of minimal fronts in monostable lattice equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 259-275. doi: 10.3934/dcds.2008.21.259

[14]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[15]

Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 203-209. doi: 10.3934/dcdss.2020011

[16]

Charlotte Beauthier, Joseph J. Winkin, Denis Dochain. Input/state invariant LQ-optimal control: Application to competitive coexistence in a chemostat. Evolution Equations & Control Theory, 2015, 4 (2) : 143-158. doi: 10.3934/eect.2015.4.143

[17]

Tobias Black. Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1253-1272. doi: 10.3934/dcdsb.2017061

[18]

Guangliang Zhao, Fuke Wu, George Yin. Feedback controls to ensure global solutions and asymptotic stability of Markovian switching diffusion systems. Mathematical Control & Related Fields, 2015, 5 (2) : 359-376. doi: 10.3934/mcrf.2015.5.359

[19]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[20]

Luyi Ma, Hong-Tao Niu, Zhi-Cheng Wang. Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2457-2472. doi: 10.3934/cpaa.2019111

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]