2012, 9(3): 627-645. doi: 10.3934/mbe.2012.9.627

The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat

1. 

Irstea, UMR ITAP, 361 rue Jean-François Breton 34196 Montpellier, & Modemic (Inra/Inria), UMR Mistea, 2 place Viala, 34060 Montpellier, France

2. 

ISSATSO (Université de Sousse) Cité Taffala, 4003 Sousse, & LAMSIN-ENIT, Université Tunis El-manar BP 37, 1002 Tunis, Tunisia

3. 

INRA UR0050, Laboratoire de Biotechnologie de l’Environnement, Avenue des Étangs, 11100 Narbonne, and Modemic (Inra/Inria), UMR Mistea, 2 place Viala, 34060 Montpellier, France

Received  November 2011 Revised  April 2012 Published  July 2012

A mathematical model involving a syntrophic relationship between two populations of bacteria in a continuous culture is proposed. A detailed qualitative analysis is carried out as well as the analysis of the local and global stability of the equilibria. We demonstrate, under general assumptions of monotonicity which are relevant from an applied point of view, the asymptotic stability of the positive equilibrium point which corresponds to the coexistence of the two bacteria. A syntrophic relationship in the anaerobic digestion process is proposed as a real candidate for this model.
Citation: Tewfik Sari, Miled El Hajji, Jérôme Harmand. The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat. Mathematical Biosciences & Engineering, 2012, 9 (3) : 627-645. doi: 10.3934/mbe.2012.9.627
References:
[1]

Y. Aota and H. Nakajima, Mutualistic relationships between phytoplankton and bacteria caused by carbon excretion from phytoplankton,, Ecological Research, 16 (2001), 289.  doi: 10.1046/j.1440-1703.2001.00396.x.  Google Scholar

[2]

M. M. Ballyk and G. S. K. Wolkowicz, Classical and resource-based competition: A unifying graphical approach,, J. Math. Biol., 62 (2011), 81.  doi: 10.1007/s00285-010-0328-x.  Google Scholar

[3]

G. Bratbak and T. F. Thingstad, Phytoplankton-bacteria interactions: An apparent paradox? Analysis of a model system with both competition and commensalism,, Ecological Research, 25 (1985), 23.   Google Scholar

[4]

M. P. Bryant, E. A. Wolin, M. J. Wolin and R. S. Wolfe, Methanobacillus omelianskii, a symbiotic association of two species of bacteria,, Arch. Microbiol., 59 (1967), 20.   Google Scholar

[5]

J. Chase and M. Leibold, "Ecological Niches - Linking Classical and Contemporary Approaches,", The University of Chicago Press, (2003).   Google Scholar

[6]

M. El Hajji, J. Harmand, H. Chaker and C. Lobry, Association between competition and obligate mutualism in a chemostat,, J. Biol. Dynamics, 3 (2009), 635.   Google Scholar

[7]

M. El Hajji, F. Mazenc and J. Harmand, A mathematical study of a syntrophic relationship of a model of anaerobic digestion process,, Math. Biosci. Eng., 7 (2010), 641.   Google Scholar

[8]

M. El Hajji and A. Rapaport, Practical coexistence of two species in the chemostat-A slow-fast characterization,, Math. Biosci., 218 (2009), 33.   Google Scholar

[9]

M. El Hajji, T. Sari and J. Harmand, Analyse d'un relation syntrophique: Cas d'un chemostat,, in, (2011), 23.   Google Scholar

[10]

H. I. Freedman, R. Kumar, A. K. Easton and M. Singh, Mathematical models of predator mutualists,, Canadian Appl. Math. Quart., 9 (2001), 99.   Google Scholar

[11]

C. Katsuyama, S. Nakaoka, Y. Takeuchi, K. Tago, M. Hayatsu and K. Kato, A mathematical model of syntrophic cocultures in the chemostat,, J. Theor. Biol., 256 (2009), 644.   Google Scholar

[12]

R. Kreikenbohm and E. Bohl, A mathematical model of syntrophic cocultures in the chemostat,, FEMS Microbiol. Ecol., 38 (1986), 131.   Google Scholar

[13]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995).   Google Scholar

[14]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755.   Google Scholar

[15]

The IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment, Activated sludge models ASM1, ASM2, ASM2d and ASM3,, Scientific and Technical Report No. 9, (2000).   Google Scholar

show all references

References:
[1]

Y. Aota and H. Nakajima, Mutualistic relationships between phytoplankton and bacteria caused by carbon excretion from phytoplankton,, Ecological Research, 16 (2001), 289.  doi: 10.1046/j.1440-1703.2001.00396.x.  Google Scholar

[2]

M. M. Ballyk and G. S. K. Wolkowicz, Classical and resource-based competition: A unifying graphical approach,, J. Math. Biol., 62 (2011), 81.  doi: 10.1007/s00285-010-0328-x.  Google Scholar

[3]

G. Bratbak and T. F. Thingstad, Phytoplankton-bacteria interactions: An apparent paradox? Analysis of a model system with both competition and commensalism,, Ecological Research, 25 (1985), 23.   Google Scholar

[4]

M. P. Bryant, E. A. Wolin, M. J. Wolin and R. S. Wolfe, Methanobacillus omelianskii, a symbiotic association of two species of bacteria,, Arch. Microbiol., 59 (1967), 20.   Google Scholar

[5]

J. Chase and M. Leibold, "Ecological Niches - Linking Classical and Contemporary Approaches,", The University of Chicago Press, (2003).   Google Scholar

[6]

M. El Hajji, J. Harmand, H. Chaker and C. Lobry, Association between competition and obligate mutualism in a chemostat,, J. Biol. Dynamics, 3 (2009), 635.   Google Scholar

[7]

M. El Hajji, F. Mazenc and J. Harmand, A mathematical study of a syntrophic relationship of a model of anaerobic digestion process,, Math. Biosci. Eng., 7 (2010), 641.   Google Scholar

[8]

M. El Hajji and A. Rapaport, Practical coexistence of two species in the chemostat-A slow-fast characterization,, Math. Biosci., 218 (2009), 33.   Google Scholar

[9]

M. El Hajji, T. Sari and J. Harmand, Analyse d'un relation syntrophique: Cas d'un chemostat,, in, (2011), 23.   Google Scholar

[10]

H. I. Freedman, R. Kumar, A. K. Easton and M. Singh, Mathematical models of predator mutualists,, Canadian Appl. Math. Quart., 9 (2001), 99.   Google Scholar

[11]

C. Katsuyama, S. Nakaoka, Y. Takeuchi, K. Tago, M. Hayatsu and K. Kato, A mathematical model of syntrophic cocultures in the chemostat,, J. Theor. Biol., 256 (2009), 644.   Google Scholar

[12]

R. Kreikenbohm and E. Bohl, A mathematical model of syntrophic cocultures in the chemostat,, FEMS Microbiol. Ecol., 38 (1986), 131.   Google Scholar

[13]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995).   Google Scholar

[14]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755.   Google Scholar

[15]

The IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment, Activated sludge models ASM1, ASM2, ASM2d and ASM3,, Scientific and Technical Report No. 9, (2000).   Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[3]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[4]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[7]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[10]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[11]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[12]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[13]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[14]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[15]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[16]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[17]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[18]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[19]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[20]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]