\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat

Abstract / Introduction Related Papers Cited by
  • A mathematical model involving a syntrophic relationship between two populations of bacteria in a continuous culture is proposed. A detailed qualitative analysis is carried out as well as the analysis of the local and global stability of the equilibria. We demonstrate, under general assumptions of monotonicity which are relevant from an applied point of view, the asymptotic stability of the positive equilibrium point which corresponds to the coexistence of the two bacteria. A syntrophic relationship in the anaerobic digestion process is proposed as a real candidate for this model.
    Mathematics Subject Classification: Primary: 92A15, 92A17; Secondary: 34C15, 34C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Y. Aota and H. Nakajima, Mutualistic relationships between phytoplankton and bacteria caused by carbon excretion from phytoplankton, Ecological Research, 16 (2001), 289-299.doi: 10.1046/j.1440-1703.2001.00396.x.

    [2]

    M. M. Ballyk and G. S. K. Wolkowicz, Classical and resource-based competition: A unifying graphical approach, J. Math. Biol., 62 (2011), 81-109.doi: 10.1007/s00285-010-0328-x.

    [3]

    G. Bratbak and T. F. Thingstad, Phytoplankton-bacteria interactions: An apparent paradox? Analysis of a model system with both competition and commensalism, Ecological Research, 25 (1985), 23-30.

    [4]

    M. P. Bryant, E. A. Wolin, M. J. Wolin and R. S. Wolfe, Methanobacillus omelianskii, a symbiotic association of two species of bacteria, Arch. Microbiol., 59 (1967), 20-31.

    [5]

    J. Chase and M. Leibold, "Ecological Niches - Linking Classical and Contemporary Approaches," The University of Chicago Press, 2003.

    [6]

    M. El Hajji, J. Harmand, H. Chaker and C. Lobry, Association between competition and obligate mutualism in a chemostat, J. Biol. Dynamics, 3 (2009), 635-647.

    [7]

    M. El Hajji, F. Mazenc and J. Harmand, A mathematical study of a syntrophic relationship of a model of anaerobic digestion process, Math. Biosci. Eng., 7 (2010), 641-656.

    [8]

    M. El Hajji and A. Rapaport, Practical coexistence of two species in the chemostat-A slow-fast characterization, Math. Biosci., 218 (2009), 33-39.

    [9]

    M. El Hajji, T. Sari and J. Harmand, Analyse d'un relation syntrophique: Cas d'un chemostat, in "Proceedings of the 5th Conference on Trends in Applied Mathematics in Tunisia, Algeria, Morocco, Sousse" (eds. M. Hassine and M. Moakher), 23-26 Avril 2011, Centre de Publication Universitaire, Tunisia, (2011), 451-456.

    [10]

    H. I. Freedman, R. Kumar, A. K. Easton and M. Singh, Mathematical models of predator mutualists, Canadian Appl. Math. Quart., 9 (2001), 99-111.

    [11]

    C. Katsuyama, S. Nakaoka, Y. Takeuchi, K. Tago, M. Hayatsu and K. Kato, A mathematical model of syntrophic cocultures in the chemostat, J. Theor. Biol., 256 (2009), 644-654.

    [12]

    R. Kreikenbohm and E. Bohl, A mathematical model of syntrophic cocultures in the chemostat, FEMS Microbiol. Ecol., 38 (1986), 131-140.

    [13]

    H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition," Cambridge Studies in Mathematical Biology, 13, Cambridge University Press, Cambridge, 1995.

    [14]

    H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.

    [15]

    The IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment, Activated sludge models ASM1, ASM2, ASM2d and ASM3, Scientific and Technical Report No. 9, (2000), IWA publishing, 130 pp.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(47) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return