• Previous Article
    A minimal mathematical model for the initial molecular interactions of death receptor signalling
  • MBE Home
  • This Issue
  • Next Article
    The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat
2012, 9(3): 647-662. doi: 10.3934/mbe.2012.9.647

A mathematical model for within-host Toxoplasma gondii invasion dynamics

1. 

Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, United States, United States

2. 

Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, United States

3. 

National Institute of Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, United States

4. 

Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States

5. 

Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300

Received  July 2011 Revised  May 2012 Published  July 2012

Toxoplasma gondii (T. gondii) is a protozoan parasite that infects a wide range of intermediate hosts, including all mammals and birds. Up to 20% of the human population in the US and 30% in the world are chronically infected. This paper presents a mathematical model to describe intra-host dynamics of T. gondii infection. The model considers the invasion process, egress kinetics, interconversion between fast-replicating tachyzoite stage and slowly replicating bradyzoite stage, as well as the host's immune response. Analytical and numerical studies of the model can help to understand the influences of various parameters to the transient and steady-state dynamics of the disease infection.
Citation: Adam Sullivan, Folashade Agusto, Sharon Bewick, Chunlei Su, Suzanne Lenhart, Xiaopeng Zhao. A mathematical model for within-host Toxoplasma gondii invasion dynamics. Mathematical Biosciences & Engineering, 2012, 9 (3) : 647-662. doi: 10.3934/mbe.2012.9.647
References:
[1]

Centers for Disease Control and Prevention, Toxoplasmosis, November 2010., Available from: , ().   Google Scholar

[2]

F. B. Agusto and A. B. Gumel, Theoretical assessment of avian influenza vaccine,, DCDS Series B, 13 (2010), 1.   Google Scholar

[3]

F. B. Agusto and O. R. Ogunye, Avian Influenza optimal seasonal vaccination strategy,, ANZIAM Journal, 51 (2010), 394.   Google Scholar

[4]

R. M. Anderson and R. May, "Infectious Diseases of Humans,", Oxford University Press, (1991).   Google Scholar

[5]

A. J. Arenas, G. Gonzalez-Parra and R. V. Mico, Modeling toxoplasmosis spread in cat populations under vaccination,, Theoretical Population Biology, 77 (2010), 227.   Google Scholar

[6]

F. Brauer and C. Castillo-Ch\'avez, "Mathematical Models in Population Biology and Epidemiology,", Texts in Applied Mathematics, 40 (2001).   Google Scholar

[7]

F. Brauer and P. van den Driessche, Models for transmission of disease with immigration of infectives,, Math. Biosc., 171 (2001), 143.  doi: 10.1016/S0025-5564(01)00057-8.  Google Scholar

[8]

L. Chen, F. Chen and L. Chen, Analysis of a predator-prey model with holling type II functional response incorporating a constant prey refuge,, Nonlinear Analysis: Real World Applications, 11 (2010), 246.  doi: 10.1016/j.nonrwa.2009.06.016.  Google Scholar

[9]

M. da Fonseca, F. da Silva, A. C. Tak\'acs, H. S. Barbosa, U. Gross and C. G L\"uder, Primary skeletal muscle cells trigger spontaneous toxoplasma gondiitachyzoite-to-bradyzoite conversion at higher rates than fibroblasts,, International Journal of Medical Microbiology, 299 (2009), 381.  doi: 10.1016/j.ijmm.2008.10.002.  Google Scholar

[10]

R. C. da Silva, A. V. da Silva and H. Langoni, Recrudescence of Toxoplasma gondii infection in chronically infectedrats (Rattus norvegicus),, Experimental Parasitology, 125 (2010), 409.  doi: 10.1016/j.exppara.2010.04.003.  Google Scholar

[11]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365.   Google Scholar

[12]

J. P. Dubey, D. S. Lindsay and C. A. Speer, Structures of toxoplasma gondii tachyzoites, bradyzoites, andsporozoites and biology and development of tissue cysts,, Clin. Microbiol. Rev., 11 (1998), 267.   Google Scholar

[13]

J. P. Dubey, "Toxoplasmosis of Animals and Humans,", CRC Press, (2010).   Google Scholar

[14]

L. Esteva, A. B. Gumel and C. V. de León, Qualitative study of transmission dynamics of drug-resistant malaria,, J. Mathematical and Computer Modelling, 50 (2009), 611.  doi: 10.1016/j.mcm.2009.02.012.  Google Scholar

[15]

D. J. Ferguson, Toxoplasma gondii andsex: Essential or optional extra?,, Trends Parasitol., 18 (2002), 355.  doi: 10.1016/S1471-4922(02)02281-X.  Google Scholar

[16]

D. Filisetti and E. Candolfi, Immuneresponse to toxoplasma gondii,, Ann Ist Super Sanita, 40 (2004), 71.   Google Scholar

[17]

S. M. Garba and A. B. Gumel, Effects of cross-immunity on the transmission dynamics of two strains of dengue,, International Journal of Computer Mathematics, 87 (2010), 2361.  doi: 10.1080/00207160802660608.  Google Scholar

[18]

S. M. Garba, A. B. Gumel and M. R. Abu Bakar, Backward bifurcations in dengue transmission dynamics,, Mathematical Biosciences, 215 (2008), 11.  doi: 10.1016/j.mbs.2008.05.002.  Google Scholar

[19]

G. C. Gonzalez-Parra, A. J. Arenas, D. F. Aranda, R. J. Villanueva, L. Jódar, Dynamics of a model of Toxoplasmosis disease in human and cat populations,, Computers and Mathematics with Applications, 57 (2009), 1692.  doi: 10.1016/j.camwa.2008.09.012.  Google Scholar

[20]

A. B. Gumel, Global dynamics of atwo-strain avian influenza model,, International Journal of Computer Mathematics, 86 (2009), 85.  doi: 10.1080/00207160701769625.  Google Scholar

[21]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev., 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[22]

C. Jeffries, V. Klee And P. van den Driessche, When is a matrix sign stable?,, Can. J. Math., 29 (1977), 315.   Google Scholar

[23]

M. E. Jerome, J. R. Radke, W. Bohne, D. S. Roos and M. W. White, Toxoplasma gondii bradyzoites form spontaneously during sporozoite-initiated development,, Infection and Immunity, 66 (1998), 4838.   Google Scholar

[24]

W. Jiang, A. Sullivan, C. Su and X. Zhao, An agent-based model for the transmission dynamics of toxoplasma gondii,, Journal of Theoretical Biology, 293 (2012), 15.  doi: 10.1016/j.jtbi.2011.10.006.  Google Scholar

[25]

M. Lélu, M. Langlais, M.-L. Poulle and E. Gilot-Fromont, Transmission dynamics of toxoplasma gondii along an urban-rural gradient,, Theoretical Population Biology, (2010), 139.   Google Scholar

[26]

B. Kafsack, V. B. Carruthers and F. J. Pineda, Kinetic modeling of toxoplasma gondii invasion,, Journal of Theoretical Biology, 249 (2007), 817.  doi: 10.1016/j.jtbi.2007.09.008.  Google Scholar

[27]

M. J. Keeling and P. Rohani, "Modeling Infectious Diseases in Humans and Animals,", Princeton University Press, (2008).   Google Scholar

[28]

M. Kot, "Elements of Mathematical Ecology,", Cambridge University Press, (2003).   Google Scholar

[29]

S. Leela, V. Lakshmikantham and A. A. Martynyuk, "Stability Analysis of Nonlinear Systems,", Monographs and Textbooks in Pure and Applied Mathematics, 125 (1989).   Google Scholar

[30]

J. D. Murray, "Mathematical Biology. I. An Introduction,", Third edition, 17 (2002).   Google Scholar

[31]

M. A. Nowak and R. May, "Virus Dynamics: Mathematical Principles of Immunology and Virology,", Oxford University Press, (2000).   Google Scholar

[32]

J. R. Radke, R. G. Donald, A. Eibs, M. E. Jerome, M. S. Behnke, P. Liberator and W. W. White, Changes in the expression of the human cell division autoantigen-1 influence toxoplasma gondii growth and development,, PLoS Pathog., 2 (2006).   Google Scholar

[33]

Z. Qiu, J. Yu and Y. Zou, The asymptotic behaviour of a chemostat model,, Discr. Cont. Dynam. Syst. Ser. B, 4 (2004), 721.   Google Scholar

[34]

O. Sharomi, C. N. Podder, A. B. Gumel and B. Song, Mathematical analysis of the transmission dynamics of HIV/TB co-infection in the presence of treatment,, Mathematical Biosciences and Engineering, 5 (2008), 145.   Google Scholar

[35]

O. Sharomi and A. B. Gumel, Re-infection-induced backward bifurcation in the transmission dynamics of Chlamydia trachomatis,, Journal of Mathematical Analysis and Applications, 356 (2009), 96.  doi: 10.1016/j.jmaa.2009.02.032.  Google Scholar

[36]

G. Skalski and J. Gilliam, Functional responses with predator interference: Viable alternatives to the holling type II model,, Ecology, 82 (2001), 3083.   Google Scholar

[37]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995).   Google Scholar

[38]

M. Turner, S. Lenhart, B. Rosenthal, A. Sullivan and X. Zhao, Modeling effective transmission strategies and control of the world's most successful parasite,, submitted., ().   Google Scholar

[39]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[40]

L. Weiss and K. Kim, "Toxoplasma Gondii,", Academic Press, (2007).   Google Scholar

[41]

D. Wodnarz, "Killer Cell Dynamics. Mathematical and Computational Approaches to Immunology,", Springer-Verlag, (2007).   Google Scholar

show all references

References:
[1]

Centers for Disease Control and Prevention, Toxoplasmosis, November 2010., Available from: , ().   Google Scholar

[2]

F. B. Agusto and A. B. Gumel, Theoretical assessment of avian influenza vaccine,, DCDS Series B, 13 (2010), 1.   Google Scholar

[3]

F. B. Agusto and O. R. Ogunye, Avian Influenza optimal seasonal vaccination strategy,, ANZIAM Journal, 51 (2010), 394.   Google Scholar

[4]

R. M. Anderson and R. May, "Infectious Diseases of Humans,", Oxford University Press, (1991).   Google Scholar

[5]

A. J. Arenas, G. Gonzalez-Parra and R. V. Mico, Modeling toxoplasmosis spread in cat populations under vaccination,, Theoretical Population Biology, 77 (2010), 227.   Google Scholar

[6]

F. Brauer and C. Castillo-Ch\'avez, "Mathematical Models in Population Biology and Epidemiology,", Texts in Applied Mathematics, 40 (2001).   Google Scholar

[7]

F. Brauer and P. van den Driessche, Models for transmission of disease with immigration of infectives,, Math. Biosc., 171 (2001), 143.  doi: 10.1016/S0025-5564(01)00057-8.  Google Scholar

[8]

L. Chen, F. Chen and L. Chen, Analysis of a predator-prey model with holling type II functional response incorporating a constant prey refuge,, Nonlinear Analysis: Real World Applications, 11 (2010), 246.  doi: 10.1016/j.nonrwa.2009.06.016.  Google Scholar

[9]

M. da Fonseca, F. da Silva, A. C. Tak\'acs, H. S. Barbosa, U. Gross and C. G L\"uder, Primary skeletal muscle cells trigger spontaneous toxoplasma gondiitachyzoite-to-bradyzoite conversion at higher rates than fibroblasts,, International Journal of Medical Microbiology, 299 (2009), 381.  doi: 10.1016/j.ijmm.2008.10.002.  Google Scholar

[10]

R. C. da Silva, A. V. da Silva and H. Langoni, Recrudescence of Toxoplasma gondii infection in chronically infectedrats (Rattus norvegicus),, Experimental Parasitology, 125 (2010), 409.  doi: 10.1016/j.exppara.2010.04.003.  Google Scholar

[11]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365.   Google Scholar

[12]

J. P. Dubey, D. S. Lindsay and C. A. Speer, Structures of toxoplasma gondii tachyzoites, bradyzoites, andsporozoites and biology and development of tissue cysts,, Clin. Microbiol. Rev., 11 (1998), 267.   Google Scholar

[13]

J. P. Dubey, "Toxoplasmosis of Animals and Humans,", CRC Press, (2010).   Google Scholar

[14]

L. Esteva, A. B. Gumel and C. V. de León, Qualitative study of transmission dynamics of drug-resistant malaria,, J. Mathematical and Computer Modelling, 50 (2009), 611.  doi: 10.1016/j.mcm.2009.02.012.  Google Scholar

[15]

D. J. Ferguson, Toxoplasma gondii andsex: Essential or optional extra?,, Trends Parasitol., 18 (2002), 355.  doi: 10.1016/S1471-4922(02)02281-X.  Google Scholar

[16]

D. Filisetti and E. Candolfi, Immuneresponse to toxoplasma gondii,, Ann Ist Super Sanita, 40 (2004), 71.   Google Scholar

[17]

S. M. Garba and A. B. Gumel, Effects of cross-immunity on the transmission dynamics of two strains of dengue,, International Journal of Computer Mathematics, 87 (2010), 2361.  doi: 10.1080/00207160802660608.  Google Scholar

[18]

S. M. Garba, A. B. Gumel and M. R. Abu Bakar, Backward bifurcations in dengue transmission dynamics,, Mathematical Biosciences, 215 (2008), 11.  doi: 10.1016/j.mbs.2008.05.002.  Google Scholar

[19]

G. C. Gonzalez-Parra, A. J. Arenas, D. F. Aranda, R. J. Villanueva, L. Jódar, Dynamics of a model of Toxoplasmosis disease in human and cat populations,, Computers and Mathematics with Applications, 57 (2009), 1692.  doi: 10.1016/j.camwa.2008.09.012.  Google Scholar

[20]

A. B. Gumel, Global dynamics of atwo-strain avian influenza model,, International Journal of Computer Mathematics, 86 (2009), 85.  doi: 10.1080/00207160701769625.  Google Scholar

[21]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev., 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[22]

C. Jeffries, V. Klee And P. van den Driessche, When is a matrix sign stable?,, Can. J. Math., 29 (1977), 315.   Google Scholar

[23]

M. E. Jerome, J. R. Radke, W. Bohne, D. S. Roos and M. W. White, Toxoplasma gondii bradyzoites form spontaneously during sporozoite-initiated development,, Infection and Immunity, 66 (1998), 4838.   Google Scholar

[24]

W. Jiang, A. Sullivan, C. Su and X. Zhao, An agent-based model for the transmission dynamics of toxoplasma gondii,, Journal of Theoretical Biology, 293 (2012), 15.  doi: 10.1016/j.jtbi.2011.10.006.  Google Scholar

[25]

M. Lélu, M. Langlais, M.-L. Poulle and E. Gilot-Fromont, Transmission dynamics of toxoplasma gondii along an urban-rural gradient,, Theoretical Population Biology, (2010), 139.   Google Scholar

[26]

B. Kafsack, V. B. Carruthers and F. J. Pineda, Kinetic modeling of toxoplasma gondii invasion,, Journal of Theoretical Biology, 249 (2007), 817.  doi: 10.1016/j.jtbi.2007.09.008.  Google Scholar

[27]

M. J. Keeling and P. Rohani, "Modeling Infectious Diseases in Humans and Animals,", Princeton University Press, (2008).   Google Scholar

[28]

M. Kot, "Elements of Mathematical Ecology,", Cambridge University Press, (2003).   Google Scholar

[29]

S. Leela, V. Lakshmikantham and A. A. Martynyuk, "Stability Analysis of Nonlinear Systems,", Monographs and Textbooks in Pure and Applied Mathematics, 125 (1989).   Google Scholar

[30]

J. D. Murray, "Mathematical Biology. I. An Introduction,", Third edition, 17 (2002).   Google Scholar

[31]

M. A. Nowak and R. May, "Virus Dynamics: Mathematical Principles of Immunology and Virology,", Oxford University Press, (2000).   Google Scholar

[32]

J. R. Radke, R. G. Donald, A. Eibs, M. E. Jerome, M. S. Behnke, P. Liberator and W. W. White, Changes in the expression of the human cell division autoantigen-1 influence toxoplasma gondii growth and development,, PLoS Pathog., 2 (2006).   Google Scholar

[33]

Z. Qiu, J. Yu and Y. Zou, The asymptotic behaviour of a chemostat model,, Discr. Cont. Dynam. Syst. Ser. B, 4 (2004), 721.   Google Scholar

[34]

O. Sharomi, C. N. Podder, A. B. Gumel and B. Song, Mathematical analysis of the transmission dynamics of HIV/TB co-infection in the presence of treatment,, Mathematical Biosciences and Engineering, 5 (2008), 145.   Google Scholar

[35]

O. Sharomi and A. B. Gumel, Re-infection-induced backward bifurcation in the transmission dynamics of Chlamydia trachomatis,, Journal of Mathematical Analysis and Applications, 356 (2009), 96.  doi: 10.1016/j.jmaa.2009.02.032.  Google Scholar

[36]

G. Skalski and J. Gilliam, Functional responses with predator interference: Viable alternatives to the holling type II model,, Ecology, 82 (2001), 3083.   Google Scholar

[37]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995).   Google Scholar

[38]

M. Turner, S. Lenhart, B. Rosenthal, A. Sullivan and X. Zhao, Modeling effective transmission strategies and control of the world's most successful parasite,, submitted., ().   Google Scholar

[39]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[40]

L. Weiss and K. Kim, "Toxoplasma Gondii,", Academic Press, (2007).   Google Scholar

[41]

D. Wodnarz, "Killer Cell Dynamics. Mathematical and Computational Approaches to Immunology,", Springer-Verlag, (2007).   Google Scholar

[1]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[2]

Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261

[3]

Sze-Bi Hsu, Yu Jin. The dynamics of a two host-two virus system in a chemostat environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 415-441. doi: 10.3934/dcdsb.2020298

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[6]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[7]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[8]

Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284

[9]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[10]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[11]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[12]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[13]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[14]

Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020362

[15]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[16]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[17]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[18]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[19]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[20]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (3)

[Back to Top]