• Previous Article
    Erratum to: Investigating the steady state of multicellular sheroids by revisiting the two-fluid model
  • MBE Home
  • This Issue
  • Next Article
    A minimal mathematical model for the initial molecular interactions of death receptor signalling
2012, 9(3): 685-695. doi: 10.3934/mbe.2012.9.685

Global properties of a delayed SIR epidemic model with multiple parallel infectious stages

1. 

Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, 3041#, 2 Yi-Kuang Street Harbin, 150080 and College of Mathematics and Information Science, Xinyang Normal University, Xinyang, 464000, China

2. 

Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, 3041#, 2 Yi-Kuang Street, Harbin, 150080

Received  October 2011 Revised  February 2012 Published  July 2012

In this paper, we study the global properties of an SIR epidemic model with distributed delays, where there are several parallel infective stages, and some of the infected cells are detected and treated, which others remain undetected and untreated. The model is analyzed by determining a basic reproduction number $R_0$, and by using Lyapunov functionals, we prove that the infection-free equilibrium $E^0$ of system (3) is globally asymptotically attractive when $R_0\leq 1$, and that the unique infected equilibrium $E^*$ of system (3) exists and it is globally asymptotically attractive when $R_0>1$.
Citation: Xia Wang, Shengqiang Liu. Global properties of a delayed SIR epidemic model with multiple parallel infectious stages. Mathematical Biosciences & Engineering, 2012, 9 (3) : 685-695. doi: 10.3934/mbe.2012.9.685
References:
[1]

K. L. Cooke, Stability analysis for a vector disease model,, Rocky Mount. J. Math., 9 (1979), 31.   Google Scholar

[2]

R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4$^+$ T cells,, Math. Biosci., 165 (2000), 27.  doi: 10.1016/S0025-5564(00)00006-7.  Google Scholar

[3]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365.  doi: 10.1007/BF00178324.  Google Scholar

[4]

S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection,, J. Biol. Dynam., 2 (2008), 140.   Google Scholar

[5]

H. W. Hethcote, Qualitative analyses of communicable disease models,, Math. Biosci., 28 (1976), 335.  doi: 10.1016/0025-5564(76)90132-2.  Google Scholar

[6]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev., 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[7]

V. Herz, S. Bonhoeffer, R. Anderson, R. M. May and M. A. Nowak, Viral dynamics in vivo: Limitations on estimations on intracellular delay and virus delay,, Proc. Natl. Acad. Sci. USA, 93 (1996), 7247.  doi: 10.1073/pnas.93.14.7247.  Google Scholar

[8]

J. Hale and S. Verduyn Lunel, "Introduction to Functional Differential Equations,", Applied Mathematical Sciences, 99 (1993).   Google Scholar

[9]

A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages,, Bull. Math. Biol., 71 (2009), 75.  doi: 10.1007/s11538-008-9352-z.  Google Scholar

[10]

A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence,, Math. Biosci. Eng., 1 (2004), 57.   Google Scholar

[11]

A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence and nonlinear incidence rate,, Math. Med. Biol., 26 (2009), 225.   Google Scholar

[12]

A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission,, Bull. Math. Biol., 68 (2006), 615.  doi: 10.1007/s11538-005-9037-9.  Google Scholar

[13]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Mathematics in Science and Engineering, 191 (1993).   Google Scholar

[14]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bull. Math. Biol., 72 (2010), 1492.  doi: 10.1007/s11538-010-9503-x.  Google Scholar

[15]

S. Liu, S. Wang and L. Wang, Global dynamics of delay epidemic models with nonlinear incidence rate and relapse,, Nonlinear Anal. Real World Appl., 12 (2011), 119.  doi: 10.1016/j.nonrwa.2010.06.001.  Google Scholar

[16]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434.  doi: 10.1137/090779322.  Google Scholar

[17]

C. C. McCluskey, Global stability of an epidemic model with delay and general nonlinear incidence,, Math. Biosci. and Eng., 7 (2010), 837.   Google Scholar

[18]

P. Magal, C. C. McCluskey and G. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109.  doi: 10.1080/00036810903208122.  Google Scholar

[19]

C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. and Eng., 6 (2009), 603.   Google Scholar

[20]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete,, Nonlinear Anal. Real World Appl., 11 (2010), 55.  doi: 10.1016/j.nonrwa.2008.10.014.  Google Scholar

[21]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence,, Nonlinear Anal. Real World Appl., 11 (2010), 3106.  doi: 10.1016/j.nonrwa.2009.11.005.  Google Scholar

[22]

K. A. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data,, Math. Biosci., 235 (2012), 98.  doi: 10.1016/j.mbs.2011.11.002.  Google Scholar

[23]

Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times,, Nonlinear Anal., 42 (2000), 931.  doi: 10.1016/S0362-546X(99)00138-8.  Google Scholar

[24]

J. Wang, G. Huang, Y. Takeuchi and S. Liu, Sveir epidemiological model with varying infectivity and distributed delays,, Math. Biosci. and Eng., 8 (2011), 875.   Google Scholar

[25]

X. Wang, Y. D. Tao and X. Y. Song, A delayed HIV-1 infection model with Beddington-DeAngelis functional response,, Nonlinear Dyn., 62 (2010), 67.  doi: 10.1007/s11071-010-9699-1.  Google Scholar

show all references

References:
[1]

K. L. Cooke, Stability analysis for a vector disease model,, Rocky Mount. J. Math., 9 (1979), 31.   Google Scholar

[2]

R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4$^+$ T cells,, Math. Biosci., 165 (2000), 27.  doi: 10.1016/S0025-5564(00)00006-7.  Google Scholar

[3]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365.  doi: 10.1007/BF00178324.  Google Scholar

[4]

S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection,, J. Biol. Dynam., 2 (2008), 140.   Google Scholar

[5]

H. W. Hethcote, Qualitative analyses of communicable disease models,, Math. Biosci., 28 (1976), 335.  doi: 10.1016/0025-5564(76)90132-2.  Google Scholar

[6]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev., 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[7]

V. Herz, S. Bonhoeffer, R. Anderson, R. M. May and M. A. Nowak, Viral dynamics in vivo: Limitations on estimations on intracellular delay and virus delay,, Proc. Natl. Acad. Sci. USA, 93 (1996), 7247.  doi: 10.1073/pnas.93.14.7247.  Google Scholar

[8]

J. Hale and S. Verduyn Lunel, "Introduction to Functional Differential Equations,", Applied Mathematical Sciences, 99 (1993).   Google Scholar

[9]

A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages,, Bull. Math. Biol., 71 (2009), 75.  doi: 10.1007/s11538-008-9352-z.  Google Scholar

[10]

A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence,, Math. Biosci. Eng., 1 (2004), 57.   Google Scholar

[11]

A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence and nonlinear incidence rate,, Math. Med. Biol., 26 (2009), 225.   Google Scholar

[12]

A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission,, Bull. Math. Biol., 68 (2006), 615.  doi: 10.1007/s11538-005-9037-9.  Google Scholar

[13]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Mathematics in Science and Engineering, 191 (1993).   Google Scholar

[14]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bull. Math. Biol., 72 (2010), 1492.  doi: 10.1007/s11538-010-9503-x.  Google Scholar

[15]

S. Liu, S. Wang and L. Wang, Global dynamics of delay epidemic models with nonlinear incidence rate and relapse,, Nonlinear Anal. Real World Appl., 12 (2011), 119.  doi: 10.1016/j.nonrwa.2010.06.001.  Google Scholar

[16]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434.  doi: 10.1137/090779322.  Google Scholar

[17]

C. C. McCluskey, Global stability of an epidemic model with delay and general nonlinear incidence,, Math. Biosci. and Eng., 7 (2010), 837.   Google Scholar

[18]

P. Magal, C. C. McCluskey and G. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109.  doi: 10.1080/00036810903208122.  Google Scholar

[19]

C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. and Eng., 6 (2009), 603.   Google Scholar

[20]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete,, Nonlinear Anal. Real World Appl., 11 (2010), 55.  doi: 10.1016/j.nonrwa.2008.10.014.  Google Scholar

[21]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence,, Nonlinear Anal. Real World Appl., 11 (2010), 3106.  doi: 10.1016/j.nonrwa.2009.11.005.  Google Scholar

[22]

K. A. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data,, Math. Biosci., 235 (2012), 98.  doi: 10.1016/j.mbs.2011.11.002.  Google Scholar

[23]

Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times,, Nonlinear Anal., 42 (2000), 931.  doi: 10.1016/S0362-546X(99)00138-8.  Google Scholar

[24]

J. Wang, G. Huang, Y. Takeuchi and S. Liu, Sveir epidemiological model with varying infectivity and distributed delays,, Math. Biosci. and Eng., 8 (2011), 875.   Google Scholar

[25]

X. Wang, Y. D. Tao and X. Y. Song, A delayed HIV-1 infection model with Beddington-DeAngelis functional response,, Nonlinear Dyn., 62 (2010), 67.  doi: 10.1007/s11071-010-9699-1.  Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[3]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[4]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[5]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[6]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[9]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[10]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[11]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[12]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[13]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[14]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[15]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[16]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[17]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[18]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[19]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[20]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]