• Previous Article
    Global analysis of a simple parasite-host model with homoclinic orbits
  • MBE Home
  • This Issue
  • Next Article
    A division-dependent compartmental model for computing cell numbers in CFSE-based lymphocyte proliferation assays
2012, 9(4): 737-765. doi: 10.3934/mbe.2012.9.737

Bacteriophage-resistant and bacteriophage-sensitive bacteria in a chemostat

1. 

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, United States

2. 

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804, United States

Received  December 2011 Revised  June 2012 Published  October 2012

In this paper a mathematical model of the population dynamics of a bacteriophage-sensitive and a bacteriophage-resistant bacteria in a chemostat where the resistant bacteria is an inferior competitor for nutrient is studied. The focus of the study is on persistence and extinction of bacterial strains and bacteriophage.
Citation: Zhun Han, Hal L. Smith. Bacteriophage-resistant and bacteriophage-sensitive bacteria in a chemostat. Mathematical Biosciences & Engineering, 2012, 9 (4) : 737-765. doi: 10.3934/mbe.2012.9.737
References:
[1]

E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection, Mathematical Biosciences, 149 (1998), 57-76. doi: 10.1016/S0025-5564(97)10015-3.  Google Scholar

[2]

E. Beretta, H. Sakakibara and Y. Takeuchi, Analysis of a chemostat model for bacteria and bacteriophage, Vietnam Journal of Mathematics, 30 (2002), 459-472.  Google Scholar

[3]

E. Beretta, H. Sakakibara and Y. Takeuchi, Stability analysis of time delayed chemostat models for bacteria and virulent phage, Dynamical Systems and their Applications in Biology, 36 (2003), 45-48.  Google Scholar

[4]

E. Beretta, F. Solimano and Y. Tang, Analysis of a chemostat model for bacteria and virulent bacteriophage, Discrete and Continuous Dynamical Systems B, 2 (2002), 495-520.  Google Scholar

[5]

B. Bohannan and R. Lenski, Effect of resource enrichment on a chemostat community of bacteria and bacteriophage, Ecology, 78 (1997), 2303-2315. Google Scholar

[6]

B. Bohannan and R. Lenski, Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage, Ecology Letters, 3 (2000), 362-377. Google Scholar

[7]

A. Campbell, Conditions for existence of bacteriophages, Evolution, 15 (1961), 153-165. doi: 10.2307/2406076.  Google Scholar

[8]

L. Chao, B. Levin and F. Stewart, A complex community in a simple habitat: an experimental study with bacteria and phage, Ecology, 58 (1977), 369-378. doi: 10.2307/1935611.  Google Scholar

[9]

E. Ellis and M. Delbrück, The growth of bacteriophage, The Journal of General Physiology, 22 (1939), 365-384. doi: 10.1085/jgp.22.3.365.  Google Scholar

[10]

G. Folland, "Real Analysis: Modern Techniques and Their Applications,'' $2^{nd}$ edition, Wiley, New York, 1999.  Google Scholar

[11]

J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcialaj Ekvacioj, 21 (1978), 11-41.  Google Scholar

[12]

J. Hale and S. Verduyn Lunel, "Introduction to Functional Differential Equations," Springer-Verlag, New York, 1993.  Google Scholar

[13]

Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay," Springer-Verlag, New York, 1991.  Google Scholar

[14]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Academic Press, San Diego, 1993.  Google Scholar

[15]

R. Lenski and B. Levin, Constraints on the coevolution of bacteria and virulent phage: A model, some experiments, and predictions for natural communities, American Naturalist, 125 (1985), 585-602. doi: 10.1086/284364.  Google Scholar

[16]

B. Levin, F. Stewart and L. Chao, Resource-limited growth, competition, and predation: a model, and experimental studies with bacteria and bacteriophage, American Naturalist, 111 (1977), 3-24. Google Scholar

[17]

K. Northcott, M. Imran and G. Wolkowicz, Composition in the presence of a virus in an aquatic system: an SIS model in a chemostat, Journal of Mathematics Biology, 64 (2012), 1043-1086. doi: 10.1007/s00285-011-0439-z.  Google Scholar

[18]

W. Ruess and W. Summers, Linearized stability for abstract differential equations with delay, Journal of Mathematical Analysis and Applications, 198 (1996), 310-336. doi: 10.1006/jmaa.1996.0085.  Google Scholar

[19]

S. Schrag and J. Mittler, Host-parasite coexistence: The role of spatial refuges in stabilizing bacteria-phage interactions, American Naturalist, 148 (1996), 348-377. doi: 10.1086/285929.  Google Scholar

[20]

H. Smith, "An introduction to Delay Differential Equations with Applications to the Life Sciences," Springer-Verlag, New York, 2010.  Google Scholar

[21]

H. Smith and H. Thieme, "Dynamical Systems and Population Persistence," American Mathematical Society, 2010.  Google Scholar

[22]

H. Smith and H. Thieme, Persistence of bacteria and phages in a chemostat, Journal of Mathematical Biology, 64 (2012), 951-979. doi: 10.1007/s00285-011-0434-4.  Google Scholar

[23]

H. Smith and P. Waltman, Perturbation of a globally stable steady state, Proceeding of the American Mathematical Society, 127 (1999), 447-453. doi: 10.1090/S0002-9939-99-04768-1.  Google Scholar

[24]

H. Smith and P. Waltman, "The Theory of the Chemostat: Dynamics of Microbial Competition," Cambridge University Press, 1995.  Google Scholar

[25]

H. Smith and X. Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Analysis Theory Methods Applications, 47 (2001), 6169-6179. doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[26]

H. Thieme, Convergence results and a poincaré-bendixson trichotomy for asymptotically autonomous differential equations, Journal of Mathematical Biology, 30 (1992), 755-763.  Google Scholar

[27]

H. Thieme, "Mathematics in Population Biology," Princeton University Press, 2003.  Google Scholar

[28]

J. Weitz, H. Hartman and S. Levin, Coevolutionary arms race between bacteria and bacteriophage, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), 9535-9540. doi: 10.1073/pnas.0504062102.  Google Scholar

show all references

References:
[1]

E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection, Mathematical Biosciences, 149 (1998), 57-76. doi: 10.1016/S0025-5564(97)10015-3.  Google Scholar

[2]

E. Beretta, H. Sakakibara and Y. Takeuchi, Analysis of a chemostat model for bacteria and bacteriophage, Vietnam Journal of Mathematics, 30 (2002), 459-472.  Google Scholar

[3]

E. Beretta, H. Sakakibara and Y. Takeuchi, Stability analysis of time delayed chemostat models for bacteria and virulent phage, Dynamical Systems and their Applications in Biology, 36 (2003), 45-48.  Google Scholar

[4]

E. Beretta, F. Solimano and Y. Tang, Analysis of a chemostat model for bacteria and virulent bacteriophage, Discrete and Continuous Dynamical Systems B, 2 (2002), 495-520.  Google Scholar

[5]

B. Bohannan and R. Lenski, Effect of resource enrichment on a chemostat community of bacteria and bacteriophage, Ecology, 78 (1997), 2303-2315. Google Scholar

[6]

B. Bohannan and R. Lenski, Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage, Ecology Letters, 3 (2000), 362-377. Google Scholar

[7]

A. Campbell, Conditions for existence of bacteriophages, Evolution, 15 (1961), 153-165. doi: 10.2307/2406076.  Google Scholar

[8]

L. Chao, B. Levin and F. Stewart, A complex community in a simple habitat: an experimental study with bacteria and phage, Ecology, 58 (1977), 369-378. doi: 10.2307/1935611.  Google Scholar

[9]

E. Ellis and M. Delbrück, The growth of bacteriophage, The Journal of General Physiology, 22 (1939), 365-384. doi: 10.1085/jgp.22.3.365.  Google Scholar

[10]

G. Folland, "Real Analysis: Modern Techniques and Their Applications,'' $2^{nd}$ edition, Wiley, New York, 1999.  Google Scholar

[11]

J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcialaj Ekvacioj, 21 (1978), 11-41.  Google Scholar

[12]

J. Hale and S. Verduyn Lunel, "Introduction to Functional Differential Equations," Springer-Verlag, New York, 1993.  Google Scholar

[13]

Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay," Springer-Verlag, New York, 1991.  Google Scholar

[14]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Academic Press, San Diego, 1993.  Google Scholar

[15]

R. Lenski and B. Levin, Constraints on the coevolution of bacteria and virulent phage: A model, some experiments, and predictions for natural communities, American Naturalist, 125 (1985), 585-602. doi: 10.1086/284364.  Google Scholar

[16]

B. Levin, F. Stewart and L. Chao, Resource-limited growth, competition, and predation: a model, and experimental studies with bacteria and bacteriophage, American Naturalist, 111 (1977), 3-24. Google Scholar

[17]

K. Northcott, M. Imran and G. Wolkowicz, Composition in the presence of a virus in an aquatic system: an SIS model in a chemostat, Journal of Mathematics Biology, 64 (2012), 1043-1086. doi: 10.1007/s00285-011-0439-z.  Google Scholar

[18]

W. Ruess and W. Summers, Linearized stability for abstract differential equations with delay, Journal of Mathematical Analysis and Applications, 198 (1996), 310-336. doi: 10.1006/jmaa.1996.0085.  Google Scholar

[19]

S. Schrag and J. Mittler, Host-parasite coexistence: The role of spatial refuges in stabilizing bacteria-phage interactions, American Naturalist, 148 (1996), 348-377. doi: 10.1086/285929.  Google Scholar

[20]

H. Smith, "An introduction to Delay Differential Equations with Applications to the Life Sciences," Springer-Verlag, New York, 2010.  Google Scholar

[21]

H. Smith and H. Thieme, "Dynamical Systems and Population Persistence," American Mathematical Society, 2010.  Google Scholar

[22]

H. Smith and H. Thieme, Persistence of bacteria and phages in a chemostat, Journal of Mathematical Biology, 64 (2012), 951-979. doi: 10.1007/s00285-011-0434-4.  Google Scholar

[23]

H. Smith and P. Waltman, Perturbation of a globally stable steady state, Proceeding of the American Mathematical Society, 127 (1999), 447-453. doi: 10.1090/S0002-9939-99-04768-1.  Google Scholar

[24]

H. Smith and P. Waltman, "The Theory of the Chemostat: Dynamics of Microbial Competition," Cambridge University Press, 1995.  Google Scholar

[25]

H. Smith and X. Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Analysis Theory Methods Applications, 47 (2001), 6169-6179. doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[26]

H. Thieme, Convergence results and a poincaré-bendixson trichotomy for asymptotically autonomous differential equations, Journal of Mathematical Biology, 30 (1992), 755-763.  Google Scholar

[27]

H. Thieme, "Mathematics in Population Biology," Princeton University Press, 2003.  Google Scholar

[28]

J. Weitz, H. Hartman and S. Levin, Coevolutionary arms race between bacteria and bacteriophage, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), 9535-9540. doi: 10.1073/pnas.0504062102.  Google Scholar

[1]

Paul L. Salceanu. Robust uniform persistence for structured models of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021258

[2]

Edoardo Beretta, Fortunata Solimano, Yanbin Tang. Analysis of a chemostat model for bacteria and virulent bacteriophage. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 495-520. doi: 10.3934/dcdsb.2002.2.495

[3]

Rafael Obaya, Ana M. Sanz. Persistence in non-autonomous quasimonotone parabolic partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3947-3970. doi: 10.3934/dcdsb.2018338

[4]

Mengshi Shu, Rui Fu, Wendi Wang. A bacteriophage model based on CRISPR/Cas immune system in a chemostat. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1361-1377. doi: 10.3934/mbe.2017070

[5]

Michael Dellnitz, Mirko Hessel-Von Molo, Adrian Ziessler. On the computation of attractors for delay differential equations. Journal of Computational Dynamics, 2016, 3 (1) : 93-112. doi: 10.3934/jcd.2016005

[6]

Hermann Brunner, Stefano Maset. Time transformations for delay differential equations. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 751-775. doi: 10.3934/dcds.2009.25.751

[7]

Klaudiusz Wójcik, Piotr Zgliczyński. Topological horseshoes and delay differential equations. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 827-852. doi: 10.3934/dcds.2005.12.827

[8]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[9]

Serhiy Yanchuk, Leonhard Lücken, Matthias Wolfrum, Alexander Mielke. Spectrum and amplitude equations for scalar delay-differential equations with large delay. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 537-553. doi: 10.3934/dcds.2015.35.537

[10]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[11]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[12]

Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633

[13]

Sana Netchaoui, Mohamed Ali Hammami, Tomás Caraballo. Pullback exponential attractors for differential equations with delay. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1345-1358. doi: 10.3934/dcdss.2020367

[14]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

[15]

Eduardo Liz, Manuel Pinto, Gonzalo Robledo, Sergei Trofimchuk, Victor Tkachenko. Wright type delay differential equations with negative Schwarzian. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 309-321. doi: 10.3934/dcds.2003.9.309

[16]

Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533

[17]

C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002

[18]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[19]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[20]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]