2012, 9(1): 75-96. doi: 10.3934/mbe.2012.9.75

Nonlinear functional response parameter estimation in a stochastic predator-prey model

1. 

Dipartimento di Scienze Biomediche e Biotecnologie, Università di Brescia, Viale Europa 11, 25125 Brescia, Italy

2. 

CNR-IMATI, Via Bassini 15, 20133 Milano, Italy, Italy

Received  May 2010 Revised  March 2011 Published  December 2011

Parameter estimation for the functional response of predator-prey systems is a critical methodological problem in population ecology. In this paper we consider a stochastic predator-prey system with non-linear Ivlev functional response and propose a method for model parameter estimation based on time series of field data. We tackle the problem of parameter estimation using a Bayesian approach relying on a Markov Chain Monte Carlo algorithm. The efficiency of the method is tested on a set of simulated data. Then, the method is applied to a predator-prey system of importance for Integrated Pest Management and biological control, the pest mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. The model is estimated on a dataset obtained from a field survey. Finally, the estimated model is used to forecast predator-prey dynamics in similar fields, with slightly different initial conditions.
Citation: Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75
References:
[1]

H. J. Barclay, Models for pest control using predator release, habitat management and pesticide release in combination, J. Applied Ecology, 19 (1982), 337-348. doi: 10.2307/2403471.  Google Scholar

[2]

A. A. Berryman, J. Michaelski, A. P. Gutierrez and R. Arditi, Logistic theory of food web dynamics, Ecology, 76 (1995), 336-343. doi: 10.2307/1941193.  Google Scholar

[3]

G. Buffoni, M. P. Cassinari, M. Groppi and M. Serluca, Modelling of predator-prey trophic interactions. I. Two trophic levels, J. Math. Biol., 50 (2005), 713-732. doi: 10.1007/s00285-004-0312-4.  Google Scholar

[4]

G. Buffoni and G. Gilioli, A lumped parameter model for acarine predator-prey population interactions, Ecological Modelling, 170 (2003), 155-171. doi: 10.1016/S0304-3800(03)00223-0.  Google Scholar

[5]

M. K. Cowles and B. P. Carlin, Markov chain Monte Carlo convergence diagnostics: A comparative review, Journal of the American Statistical Association, 91 (1996), 883-904. doi: 10.2307/2291683.  Google Scholar

[6]

G. B. Durham and A. R. Gallant, Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes, Journal of Business & Economic Statistics, 20 (2002), 297-338. doi: 10.1198/073500102288618397.  Google Scholar

[7]

O. Elerian, S. Chib and N. Shephard, Likelihood inference for discretely observed nonlinear diffusions, Econometrica, 69 (2001), 959-993. doi: 10.1111/1468-0262.00226.  Google Scholar

[8]

B. Eraker, MCMC analysis of diffusion models with application to finance, Journal of Business & Economic Statistics, 19 (2001), 177-191. doi: 10.1198/073500101316970403.  Google Scholar

[9]

M. L. Flint and R. van den Bosch, "Introduction to Integrated Pest Management,'' Plenum Press, New York, 1981. Google Scholar

[10]

D. Gamerman and H. F. Lopes, "Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference," Second edition, Texts in Statistical Science Series, Chapman & Hall, Boca Raton, FL, 2006.  Google Scholar

[11]

G. Gilioli and V. Vacante, Aspetti della dinamica di popolazione del sistema. Tetranychus urticae - Phytoseiulus persimilis, in "Pieno Campo: Implicazioni per le Strategie di Lotta Biologica," in Atti del Convegno La Difesa delle Colture in Agricoltura Biologica, Grugliasco - Torino, 5-6 Settembre 2001, Notiziario sulla Protezione delle Piante, 13 (nuova serie), (2001), 95-99. Google Scholar

[12]

G. Gilioli, S. Pasquali and F. Ruggeri, Bayesian inference for functional response in a stochastic predator-prey system, Bulletin of Mathematical Biology, 70 (2008), 358-381. doi: 10.1007/s11538-007-9256-3.  Google Scholar

[13]

W. R. Gilks, S. Richardson and D. J. Spiegelhalter, eds., "Markov Chain Monte Carlo in practice,'' Interdisciplinary Statistics, Chapman & Hall, London, 1996.  Google Scholar

[14]

A. Golightly and D. J. Wilkinson, Bayesian inference for stochastic kinetic models using a diffusion approximation, Biometrics, 61 (2005), 781-788. doi: 10.1111/j.1541-0420.2005.00345.x.  Google Scholar

[15]

A. Golightly and D. J. Wilkinson, Bayesian inference for nonlinear multivariate diffusion models observed with error, Computational Statistics & Data Analysis, 52 (2008), 1674-1693. doi: 10.1016/j.csda.2007.05.019.  Google Scholar

[16]

A. Golightly and D. J. Wilkinson, Markov chain Monte Carlo algorithms for SDE parameter estimation, in "Learning and Inference for Computational Systems Biology" (eds. N. D. Lawrence, M. Girolami, M. Rattray and G. Sanguinetti), MIT Press, (2010), 253-275. Google Scholar

[17]

A. P. Gutierrez, "Applied Population Ecology. A Supply-Demand Approach,'' John Wiley & Sons, New York, 1996. Google Scholar

[18]

V. S. Ivlev, "Experimental Ecology of the Feeding of Fishes,'' Yale University Press, New Haven, 1961. Google Scholar

[19]

C. Jost and R. Arditi, Identifying predator-prey process from time-series, Theoretical Population Biology, 57 (2000), 325-337. doi: 10.1006/tpbi.2000.1463.  Google Scholar

[20]

C. Jost and R. Arditi, From pattern to process: Identifying predator-prey models from time-series data, Population Ecology, 43 (2001), 229-243. doi: 10.1007/s10144-001-8187-3.  Google Scholar

[21]

P. Kareiva, Population dynamics in spatially complex environments: Theory and data, Phil. Trans. R. Soc. Lond., 330 (1990), 175-190. doi: 10.1098/rstb.1990.0191.  Google Scholar

[22]

H. McCullum, "Population Parameters. Estimation for Ecological Models,'' Blackwell, Oxford, 2000. Google Scholar

[23]

B. Øksendal, "Stochastic Differential Equations: An Introduction with Applications,'' $5^{th}$ edition, Springer, Berlin, 1998. Google Scholar

[24]

F. D. Parker, Management of pest populations by manipulating densities of both host and parasites through periodic releases, in "Biological Control" (ed. C. B. Huffaker), Plenum Press, (1971), 365-376. Google Scholar

[25]

M. A. Pascual and K. Kareiva, Predicting the outcome of competition using experimental data: Maximum likelihood and bayesian approaches, Ecology, 77 (1996), 337-349. doi: 10.2307/2265613.  Google Scholar

[26]

G. O. Roberts and O. Stramer, On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm, Biometrika, 88 (2001), 603-621. doi: 10.1093/biomet/88.3.603.  Google Scholar

[27]

T. Royama, A comparative study of models for predation and parasitism, Research on Population Ecology, Supp. 1 (1971), 1-91. doi: 10.1007/BF02511547.  Google Scholar

[28]

M. A. Tanner and W. H. Wong, The calculation of posterior distributions by data augmentation, Journal of the American Statistical Association, 82 (1987), 528-550. doi: 10.2307/2289457.  Google Scholar

show all references

References:
[1]

H. J. Barclay, Models for pest control using predator release, habitat management and pesticide release in combination, J. Applied Ecology, 19 (1982), 337-348. doi: 10.2307/2403471.  Google Scholar

[2]

A. A. Berryman, J. Michaelski, A. P. Gutierrez and R. Arditi, Logistic theory of food web dynamics, Ecology, 76 (1995), 336-343. doi: 10.2307/1941193.  Google Scholar

[3]

G. Buffoni, M. P. Cassinari, M. Groppi and M. Serluca, Modelling of predator-prey trophic interactions. I. Two trophic levels, J. Math. Biol., 50 (2005), 713-732. doi: 10.1007/s00285-004-0312-4.  Google Scholar

[4]

G. Buffoni and G. Gilioli, A lumped parameter model for acarine predator-prey population interactions, Ecological Modelling, 170 (2003), 155-171. doi: 10.1016/S0304-3800(03)00223-0.  Google Scholar

[5]

M. K. Cowles and B. P. Carlin, Markov chain Monte Carlo convergence diagnostics: A comparative review, Journal of the American Statistical Association, 91 (1996), 883-904. doi: 10.2307/2291683.  Google Scholar

[6]

G. B. Durham and A. R. Gallant, Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes, Journal of Business & Economic Statistics, 20 (2002), 297-338. doi: 10.1198/073500102288618397.  Google Scholar

[7]

O. Elerian, S. Chib and N. Shephard, Likelihood inference for discretely observed nonlinear diffusions, Econometrica, 69 (2001), 959-993. doi: 10.1111/1468-0262.00226.  Google Scholar

[8]

B. Eraker, MCMC analysis of diffusion models with application to finance, Journal of Business & Economic Statistics, 19 (2001), 177-191. doi: 10.1198/073500101316970403.  Google Scholar

[9]

M. L. Flint and R. van den Bosch, "Introduction to Integrated Pest Management,'' Plenum Press, New York, 1981. Google Scholar

[10]

D. Gamerman and H. F. Lopes, "Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference," Second edition, Texts in Statistical Science Series, Chapman & Hall, Boca Raton, FL, 2006.  Google Scholar

[11]

G. Gilioli and V. Vacante, Aspetti della dinamica di popolazione del sistema. Tetranychus urticae - Phytoseiulus persimilis, in "Pieno Campo: Implicazioni per le Strategie di Lotta Biologica," in Atti del Convegno La Difesa delle Colture in Agricoltura Biologica, Grugliasco - Torino, 5-6 Settembre 2001, Notiziario sulla Protezione delle Piante, 13 (nuova serie), (2001), 95-99. Google Scholar

[12]

G. Gilioli, S. Pasquali and F. Ruggeri, Bayesian inference for functional response in a stochastic predator-prey system, Bulletin of Mathematical Biology, 70 (2008), 358-381. doi: 10.1007/s11538-007-9256-3.  Google Scholar

[13]

W. R. Gilks, S. Richardson and D. J. Spiegelhalter, eds., "Markov Chain Monte Carlo in practice,'' Interdisciplinary Statistics, Chapman & Hall, London, 1996.  Google Scholar

[14]

A. Golightly and D. J. Wilkinson, Bayesian inference for stochastic kinetic models using a diffusion approximation, Biometrics, 61 (2005), 781-788. doi: 10.1111/j.1541-0420.2005.00345.x.  Google Scholar

[15]

A. Golightly and D. J. Wilkinson, Bayesian inference for nonlinear multivariate diffusion models observed with error, Computational Statistics & Data Analysis, 52 (2008), 1674-1693. doi: 10.1016/j.csda.2007.05.019.  Google Scholar

[16]

A. Golightly and D. J. Wilkinson, Markov chain Monte Carlo algorithms for SDE parameter estimation, in "Learning and Inference for Computational Systems Biology" (eds. N. D. Lawrence, M. Girolami, M. Rattray and G. Sanguinetti), MIT Press, (2010), 253-275. Google Scholar

[17]

A. P. Gutierrez, "Applied Population Ecology. A Supply-Demand Approach,'' John Wiley & Sons, New York, 1996. Google Scholar

[18]

V. S. Ivlev, "Experimental Ecology of the Feeding of Fishes,'' Yale University Press, New Haven, 1961. Google Scholar

[19]

C. Jost and R. Arditi, Identifying predator-prey process from time-series, Theoretical Population Biology, 57 (2000), 325-337. doi: 10.1006/tpbi.2000.1463.  Google Scholar

[20]

C. Jost and R. Arditi, From pattern to process: Identifying predator-prey models from time-series data, Population Ecology, 43 (2001), 229-243. doi: 10.1007/s10144-001-8187-3.  Google Scholar

[21]

P. Kareiva, Population dynamics in spatially complex environments: Theory and data, Phil. Trans. R. Soc. Lond., 330 (1990), 175-190. doi: 10.1098/rstb.1990.0191.  Google Scholar

[22]

H. McCullum, "Population Parameters. Estimation for Ecological Models,'' Blackwell, Oxford, 2000. Google Scholar

[23]

B. Øksendal, "Stochastic Differential Equations: An Introduction with Applications,'' $5^{th}$ edition, Springer, Berlin, 1998. Google Scholar

[24]

F. D. Parker, Management of pest populations by manipulating densities of both host and parasites through periodic releases, in "Biological Control" (ed. C. B. Huffaker), Plenum Press, (1971), 365-376. Google Scholar

[25]

M. A. Pascual and K. Kareiva, Predicting the outcome of competition using experimental data: Maximum likelihood and bayesian approaches, Ecology, 77 (1996), 337-349. doi: 10.2307/2265613.  Google Scholar

[26]

G. O. Roberts and O. Stramer, On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm, Biometrika, 88 (2001), 603-621. doi: 10.1093/biomet/88.3.603.  Google Scholar

[27]

T. Royama, A comparative study of models for predation and parasitism, Research on Population Ecology, Supp. 1 (1971), 1-91. doi: 10.1007/BF02511547.  Google Scholar

[28]

M. A. Tanner and W. H. Wong, The calculation of posterior distributions by data augmentation, Journal of the American Statistical Association, 82 (1987), 528-550. doi: 10.2307/2289457.  Google Scholar

[1]

Deng Lu, Maria De Iorio, Ajay Jasra, Gary L. Rosner. Bayesian inference for latent chain graphs. Foundations of Data Science, 2020, 2 (1) : 35-54. doi: 10.3934/fods.2020003

[2]

Marc Bocquet, Julien Brajard, Alberto Carrassi, Laurent Bertino. Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization. Foundations of Data Science, 2020, 2 (1) : 55-80. doi: 10.3934/fods.2020004

[3]

Meixin Xiong, Liuhong Chen, Ju Ming, Jaemin Shin. Accelerating the Bayesian inference of inverse problems by using data-driven compressive sensing method based on proper orthogonal decomposition. Electronic Research Archive, 2021, 29 (5) : 3383-3403. doi: 10.3934/era.2021044

[4]

Sahani Pathiraja, Sebastian Reich. Discrete gradients for computational Bayesian inference. Journal of Computational Dynamics, 2019, 6 (2) : 385-400. doi: 10.3934/jcd.2019019

[5]

Evangelos Evangelou. Approximate Bayesian inference for geostatistical generalised linear models. Foundations of Data Science, 2019, 1 (1) : 39-60. doi: 10.3934/fods.2019002

[6]

Tan Bui-Thanh, Quoc P. Nguyen. FEM-based discretization-invariant MCMC methods for PDE-constrained Bayesian inverse problems. Inverse Problems & Imaging, 2016, 10 (4) : 943-975. doi: 10.3934/ipi.2016028

[7]

Mostafa Karimi, Noor Akma Ibrahim, Mohd Rizam Abu Bakar, Jayanthi Arasan. Rank-based inference for the accelerated failure time model in the presence of interval censored data. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 107-112. doi: 10.3934/naco.2017007

[8]

Débora A. F. Albanez, Maicon J. Benvenutti. Continuous data assimilation algorithm for simplified Bardina model. Evolution Equations & Control Theory, 2018, 7 (1) : 33-52. doi: 10.3934/eect.2018002

[9]

Alessia Marigo, Benedetto Piccoli. A model for biological dynamic networks. Networks & Heterogeneous Media, 2011, 6 (4) : 647-663. doi: 10.3934/nhm.2011.6.647

[10]

William Chad Young, Adrian E. Raftery, Ka Yee Yeung. A posterior probability approach for gene regulatory network inference in genetic perturbation data. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1241-1251. doi: 10.3934/mbe.2016041

[11]

Mila Nikolova. Model distortions in Bayesian MAP reconstruction. Inverse Problems & Imaging, 2007, 1 (2) : 399-422. doi: 10.3934/ipi.2007.1.399

[12]

Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo. A gradient algorithm for optimal control problems with model-reality differences. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 251-266. doi: 10.3934/naco.2015.5.251

[13]

Tan Bui-Thanh, Omar Ghattas. A scalable algorithm for MAP estimators in Bayesian inverse problems with Besov priors. Inverse Problems & Imaging, 2015, 9 (1) : 27-53. doi: 10.3934/ipi.2015.9.27

[14]

Hailiang Liu, Xuping Tian. Data-driven optimal control of a seir model for COVID-19. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021093

[15]

Jiangqi Wu, Linjie Wen, Jinglai Li. Resampled ensemble Kalman inversion for Bayesian parameter estimation with sequential data. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021045

[16]

Stephen Pankavich, Deborah Shutt. An in-host model of HIV incorporating latent infection and viral mutation. Conference Publications, 2015, 2015 (special) : 913-922. doi: 10.3934/proc.2015.0913

[17]

Azizeh Jabbari, Carlos Castillo-Chavez, Fereshteh Nazari, Baojun Song, Hossein Kheiri. A two-strain TB model with multiple latent stages. Mathematical Biosciences & Engineering, 2016, 13 (4) : 741-785. doi: 10.3934/mbe.2016017

[18]

Danuta Gaweł, Krzysztof Fujarewicz. On the sensitivity of feature ranked lists for large-scale biological data. Mathematical Biosciences & Engineering, 2013, 10 (3) : 667-690. doi: 10.3934/mbe.2013.10.667

[19]

Michele La Rocca, Cira Perna. Designing neural networks for modeling biological data: A statistical perspective. Mathematical Biosciences & Engineering, 2014, 11 (2) : 331-342. doi: 10.3934/mbe.2014.11.331

[20]

Mohammad El Smaily, François Hamel, Lionel Roques. Homogenization and influence of fragmentation in a biological invasion model. Discrete & Continuous Dynamical Systems, 2009, 25 (1) : 321-342. doi: 10.3934/dcds.2009.25.321

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]