2012, 9(1): 75-96. doi: 10.3934/mbe.2012.9.75

Nonlinear functional response parameter estimation in a stochastic predator-prey model

1. 

Dipartimento di Scienze Biomediche e Biotecnologie, Università di Brescia, Viale Europa 11, 25125 Brescia, Italy

2. 

CNR-IMATI, Via Bassini 15, 20133 Milano, Italy, Italy

Received  May 2010 Revised  March 2011 Published  December 2011

Parameter estimation for the functional response of predator-prey systems is a critical methodological problem in population ecology. In this paper we consider a stochastic predator-prey system with non-linear Ivlev functional response and propose a method for model parameter estimation based on time series of field data. We tackle the problem of parameter estimation using a Bayesian approach relying on a Markov Chain Monte Carlo algorithm. The efficiency of the method is tested on a set of simulated data. Then, the method is applied to a predator-prey system of importance for Integrated Pest Management and biological control, the pest mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. The model is estimated on a dataset obtained from a field survey. Finally, the estimated model is used to forecast predator-prey dynamics in similar fields, with slightly different initial conditions.
Citation: Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75
References:
[1]

H. J. Barclay, Models for pest control using predator release, habitat management and pesticide release in combination,, J. Applied Ecology, 19 (1982), 337. doi: 10.2307/2403471. Google Scholar

[2]

A. A. Berryman, J. Michaelski, A. P. Gutierrez and R. Arditi, Logistic theory of food web dynamics,, Ecology, 76 (1995), 336. doi: 10.2307/1941193. Google Scholar

[3]

G. Buffoni, M. P. Cassinari, M. Groppi and M. Serluca, Modelling of predator-prey trophic interactions. I. Two trophic levels,, J. Math. Biol., 50 (2005), 713. doi: 10.1007/s00285-004-0312-4. Google Scholar

[4]

G. Buffoni and G. Gilioli, A lumped parameter model for acarine predator-prey population interactions,, Ecological Modelling, 170 (2003), 155. doi: 10.1016/S0304-3800(03)00223-0. Google Scholar

[5]

M. K. Cowles and B. P. Carlin, Markov chain Monte Carlo convergence diagnostics: A comparative review,, Journal of the American Statistical Association, 91 (1996), 883. doi: 10.2307/2291683. Google Scholar

[6]

G. B. Durham and A. R. Gallant, Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes,, Journal of Business & Economic Statistics, 20 (2002), 297. doi: 10.1198/073500102288618397. Google Scholar

[7]

O. Elerian, S. Chib and N. Shephard, Likelihood inference for discretely observed nonlinear diffusions,, Econometrica, 69 (2001), 959. doi: 10.1111/1468-0262.00226. Google Scholar

[8]

B. Eraker, MCMC analysis of diffusion models with application to finance,, Journal of Business & Economic Statistics, 19 (2001), 177. doi: 10.1198/073500101316970403. Google Scholar

[9]

M. L. Flint and R. van den Bosch, "Introduction to Integrated Pest Management,'', Plenum Press, (1981). Google Scholar

[10]

D. Gamerman and H. F. Lopes, "Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference," Second edition,, Texts in Statistical Science Series, (2006). Google Scholar

[11]

G. Gilioli and V. Vacante, Aspetti della dinamica di popolazione del sistema. Tetranychus urticae - Phytoseiulus persimilis, in "Pieno Campo: Implicazioni per le Strategie di Lotta Biologica,", in Atti del Convegno La Difesa delle Colture in Agricoltura Biologica, (2001), 5. Google Scholar

[12]

G. Gilioli, S. Pasquali and F. Ruggeri, Bayesian inference for functional response in a stochastic predator-prey system,, Bulletin of Mathematical Biology, 70 (2008), 358. doi: 10.1007/s11538-007-9256-3. Google Scholar

[13]

W. R. Gilks, S. Richardson and D. J. Spiegelhalter, eds., "Markov Chain Monte Carlo in practice,'', Interdisciplinary Statistics, (1996). Google Scholar

[14]

A. Golightly and D. J. Wilkinson, Bayesian inference for stochastic kinetic models using a diffusion approximation,, Biometrics, 61 (2005), 781. doi: 10.1111/j.1541-0420.2005.00345.x. Google Scholar

[15]

A. Golightly and D. J. Wilkinson, Bayesian inference for nonlinear multivariate diffusion models observed with error,, Computational Statistics & Data Analysis, 52 (2008), 1674. doi: 10.1016/j.csda.2007.05.019. Google Scholar

[16]

A. Golightly and D. J. Wilkinson, Markov chain Monte Carlo algorithms for SDE parameter estimation,, in, (2010), 253. Google Scholar

[17]

A. P. Gutierrez, "Applied Population Ecology. A Supply-Demand Approach,'', John Wiley & Sons, (1996). Google Scholar

[18]

V. S. Ivlev, "Experimental Ecology of the Feeding of Fishes,'', Yale University Press, (1961). Google Scholar

[19]

C. Jost and R. Arditi, Identifying predator-prey process from time-series,, Theoretical Population Biology, 57 (2000), 325. doi: 10.1006/tpbi.2000.1463. Google Scholar

[20]

C. Jost and R. Arditi, From pattern to process: Identifying predator-prey models from time-series data,, Population Ecology, 43 (2001), 229. doi: 10.1007/s10144-001-8187-3. Google Scholar

[21]

P. Kareiva, Population dynamics in spatially complex environments: Theory and data,, Phil. Trans. R. Soc. Lond., 330 (1990), 175. doi: 10.1098/rstb.1990.0191. Google Scholar

[22]

H. McCullum, "Population Parameters. Estimation for Ecological Models,'', Blackwell, (2000). Google Scholar

[23]

B. Øksendal, "Stochastic Differential Equations: An Introduction with Applications,'' $5^{th}$ edition,, Springer, (1998). Google Scholar

[24]

F. D. Parker, Management of pest populations by manipulating densities of both host and parasites through periodic releases,, in, (1971), 365. Google Scholar

[25]

M. A. Pascual and K. Kareiva, Predicting the outcome of competition using experimental data: Maximum likelihood and bayesian approaches,, Ecology, 77 (1996), 337. doi: 10.2307/2265613. Google Scholar

[26]

G. O. Roberts and O. Stramer, On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm,, Biometrika, 88 (2001), 603. doi: 10.1093/biomet/88.3.603. Google Scholar

[27]

T. Royama, A comparative study of models for predation and parasitism,, Research on Population Ecology, Supp. 1 (1971), 1. doi: 10.1007/BF02511547. Google Scholar

[28]

M. A. Tanner and W. H. Wong, The calculation of posterior distributions by data augmentation,, Journal of the American Statistical Association, 82 (1987), 528. doi: 10.2307/2289457. Google Scholar

show all references

References:
[1]

H. J. Barclay, Models for pest control using predator release, habitat management and pesticide release in combination,, J. Applied Ecology, 19 (1982), 337. doi: 10.2307/2403471. Google Scholar

[2]

A. A. Berryman, J. Michaelski, A. P. Gutierrez and R. Arditi, Logistic theory of food web dynamics,, Ecology, 76 (1995), 336. doi: 10.2307/1941193. Google Scholar

[3]

G. Buffoni, M. P. Cassinari, M. Groppi and M. Serluca, Modelling of predator-prey trophic interactions. I. Two trophic levels,, J. Math. Biol., 50 (2005), 713. doi: 10.1007/s00285-004-0312-4. Google Scholar

[4]

G. Buffoni and G. Gilioli, A lumped parameter model for acarine predator-prey population interactions,, Ecological Modelling, 170 (2003), 155. doi: 10.1016/S0304-3800(03)00223-0. Google Scholar

[5]

M. K. Cowles and B. P. Carlin, Markov chain Monte Carlo convergence diagnostics: A comparative review,, Journal of the American Statistical Association, 91 (1996), 883. doi: 10.2307/2291683. Google Scholar

[6]

G. B. Durham and A. R. Gallant, Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes,, Journal of Business & Economic Statistics, 20 (2002), 297. doi: 10.1198/073500102288618397. Google Scholar

[7]

O. Elerian, S. Chib and N. Shephard, Likelihood inference for discretely observed nonlinear diffusions,, Econometrica, 69 (2001), 959. doi: 10.1111/1468-0262.00226. Google Scholar

[8]

B. Eraker, MCMC analysis of diffusion models with application to finance,, Journal of Business & Economic Statistics, 19 (2001), 177. doi: 10.1198/073500101316970403. Google Scholar

[9]

M. L. Flint and R. van den Bosch, "Introduction to Integrated Pest Management,'', Plenum Press, (1981). Google Scholar

[10]

D. Gamerman and H. F. Lopes, "Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference," Second edition,, Texts in Statistical Science Series, (2006). Google Scholar

[11]

G. Gilioli and V. Vacante, Aspetti della dinamica di popolazione del sistema. Tetranychus urticae - Phytoseiulus persimilis, in "Pieno Campo: Implicazioni per le Strategie di Lotta Biologica,", in Atti del Convegno La Difesa delle Colture in Agricoltura Biologica, (2001), 5. Google Scholar

[12]

G. Gilioli, S. Pasquali and F. Ruggeri, Bayesian inference for functional response in a stochastic predator-prey system,, Bulletin of Mathematical Biology, 70 (2008), 358. doi: 10.1007/s11538-007-9256-3. Google Scholar

[13]

W. R. Gilks, S. Richardson and D. J. Spiegelhalter, eds., "Markov Chain Monte Carlo in practice,'', Interdisciplinary Statistics, (1996). Google Scholar

[14]

A. Golightly and D. J. Wilkinson, Bayesian inference for stochastic kinetic models using a diffusion approximation,, Biometrics, 61 (2005), 781. doi: 10.1111/j.1541-0420.2005.00345.x. Google Scholar

[15]

A. Golightly and D. J. Wilkinson, Bayesian inference for nonlinear multivariate diffusion models observed with error,, Computational Statistics & Data Analysis, 52 (2008), 1674. doi: 10.1016/j.csda.2007.05.019. Google Scholar

[16]

A. Golightly and D. J. Wilkinson, Markov chain Monte Carlo algorithms for SDE parameter estimation,, in, (2010), 253. Google Scholar

[17]

A. P. Gutierrez, "Applied Population Ecology. A Supply-Demand Approach,'', John Wiley & Sons, (1996). Google Scholar

[18]

V. S. Ivlev, "Experimental Ecology of the Feeding of Fishes,'', Yale University Press, (1961). Google Scholar

[19]

C. Jost and R. Arditi, Identifying predator-prey process from time-series,, Theoretical Population Biology, 57 (2000), 325. doi: 10.1006/tpbi.2000.1463. Google Scholar

[20]

C. Jost and R. Arditi, From pattern to process: Identifying predator-prey models from time-series data,, Population Ecology, 43 (2001), 229. doi: 10.1007/s10144-001-8187-3. Google Scholar

[21]

P. Kareiva, Population dynamics in spatially complex environments: Theory and data,, Phil. Trans. R. Soc. Lond., 330 (1990), 175. doi: 10.1098/rstb.1990.0191. Google Scholar

[22]

H. McCullum, "Population Parameters. Estimation for Ecological Models,'', Blackwell, (2000). Google Scholar

[23]

B. Øksendal, "Stochastic Differential Equations: An Introduction with Applications,'' $5^{th}$ edition,, Springer, (1998). Google Scholar

[24]

F. D. Parker, Management of pest populations by manipulating densities of both host and parasites through periodic releases,, in, (1971), 365. Google Scholar

[25]

M. A. Pascual and K. Kareiva, Predicting the outcome of competition using experimental data: Maximum likelihood and bayesian approaches,, Ecology, 77 (1996), 337. doi: 10.2307/2265613. Google Scholar

[26]

G. O. Roberts and O. Stramer, On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm,, Biometrika, 88 (2001), 603. doi: 10.1093/biomet/88.3.603. Google Scholar

[27]

T. Royama, A comparative study of models for predation and parasitism,, Research on Population Ecology, Supp. 1 (1971), 1. doi: 10.1007/BF02511547. Google Scholar

[28]

M. A. Tanner and W. H. Wong, The calculation of posterior distributions by data augmentation,, Journal of the American Statistical Association, 82 (1987), 528. doi: 10.2307/2289457. Google Scholar

[1]

Evangelos Evangelou. Approximate Bayesian inference for geostatistical generalised linear models. Foundations of Data Science, 2019, 1 (1) : 39-60. doi: 10.3934/fods.2019002

[2]

Mostafa Karimi, Noor Akma Ibrahim, Mohd Rizam Abu Bakar, Jayanthi Arasan. Rank-based inference for the accelerated failure time model in the presence of interval censored data. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 107-112. doi: 10.3934/naco.2017007

[3]

Tan Bui-Thanh, Quoc P. Nguyen. FEM-based discretization-invariant MCMC methods for PDE-constrained Bayesian inverse problems. Inverse Problems & Imaging, 2016, 10 (4) : 943-975. doi: 10.3934/ipi.2016028

[4]

Débora A. F. Albanez, Maicon J. Benvenutti. Continuous data assimilation algorithm for simplified Bardina model. Evolution Equations & Control Theory, 2018, 7 (1) : 33-52. doi: 10.3934/eect.2018002

[5]

Alessia Marigo, Benedetto Piccoli. A model for biological dynamic networks. Networks & Heterogeneous Media, 2011, 6 (4) : 647-663. doi: 10.3934/nhm.2011.6.647

[6]

William Chad Young, Adrian E. Raftery, Ka Yee Yeung. A posterior probability approach for gene regulatory network inference in genetic perturbation data. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1241-1251. doi: 10.3934/mbe.2016041

[7]

Mila Nikolova. Model distortions in Bayesian MAP reconstruction. Inverse Problems & Imaging, 2007, 1 (2) : 399-422. doi: 10.3934/ipi.2007.1.399

[8]

Tan Bui-Thanh, Omar Ghattas. A scalable algorithm for MAP estimators in Bayesian inverse problems with Besov priors. Inverse Problems & Imaging, 2015, 9 (1) : 27-53. doi: 10.3934/ipi.2015.9.27

[9]

Stephen Pankavich, Deborah Shutt. An in-host model of HIV incorporating latent infection and viral mutation. Conference Publications, 2015, 2015 (special) : 913-922. doi: 10.3934/proc.2015.0913

[10]

Azizeh Jabbari, Carlos Castillo-Chavez, Fereshteh Nazari, Baojun Song, Hossein Kheiri. A two-strain TB model with multiple latent stages. Mathematical Biosciences & Engineering, 2016, 13 (4) : 741-785. doi: 10.3934/mbe.2016017

[11]

Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo. A gradient algorithm for optimal control problems with model-reality differences. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 251-266. doi: 10.3934/naco.2015.5.251

[12]

Danuta Gaweł, Krzysztof Fujarewicz. On the sensitivity of feature ranked lists for large-scale biological data. Mathematical Biosciences & Engineering, 2013, 10 (3) : 667-690. doi: 10.3934/mbe.2013.10.667

[13]

Michele La Rocca, Cira Perna. Designing neural networks for modeling biological data: A statistical perspective. Mathematical Biosciences & Engineering, 2014, 11 (2) : 331-342. doi: 10.3934/mbe.2014.11.331

[14]

Mohammad El Smaily, François Hamel, Lionel Roques. Homogenization and influence of fragmentation in a biological invasion model. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 321-342. doi: 10.3934/dcds.2009.25.321

[15]

Alain Rapaport, Jérôme Harmand. Biological control of the chemostat with nonmonotonic response and different removal rates. Mathematical Biosciences & Engineering, 2008, 5 (3) : 539-547. doi: 10.3934/mbe.2008.5.539

[16]

Daniela Calvetti, Jenni Heino, Erkki Somersalo, Knarik Tunyan. Bayesian stationary state flux balance analysis for a skeletal muscle metabolic model. Inverse Problems & Imaging, 2007, 1 (2) : 247-263. doi: 10.3934/ipi.2007.1.247

[17]

Yoon-Sik Cho, Aram Galstyan, P. Jeffrey Brantingham, George Tita. Latent self-exciting point process model for spatial-temporal networks. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1335-1354. doi: 10.3934/dcdsb.2014.19.1335

[18]

Yu Yang, Yueping Dong, Yasuhiro Takeuchi. Global dynamics of a latent HIV infection model with general incidence function and multiple delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 783-800. doi: 10.3934/dcdsb.2018207

[19]

Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 109-125. doi: 10.3934/naco.2013.3.109

[20]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Sampled–data model predictive control: Adaptive time–mesh refinement algorithms and guarantees of stability. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2335-2364. doi: 10.3934/dcdsb.2019098

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]