2012, 9(4): 767-784. doi: 10.3934/mbe.2012.9.767

Global analysis of a simple parasite-host model with homoclinic orbits

1. 

Faculty of Science, Air Force Engineering University, Xi'an 710051, China, China

2. 

Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an 710049, China

Received  January 2012 Revised  May 2012 Published  October 2012

In this paper, a simple parasite-host model proposed by Ebert et al.(2000) is reconsidered. The basic epidemiological reproduction number of parasite infection ($R_0$) and the basic demographic reproduction number of infected hosts ($R_1$) are given. The global dynamics of the model is completely investigated, and the existence of heteroclinic and homoclinic orbits is theoretically proved, which implies that the outbreak of parasite infection may happen. The thresholds determining the host extinction in the presence of parasite infection and variation in the equilibrium level of the infected hosts with $R_0$ are found. The effects of $R_0$ and $R_1$ on dynamics of the model are considered and we show that the equilibrium level of the infected host may not be monotone with respect to $R_0$. In particular, it is found that full loss of fecundity of infected hosts may lead to appearance of the singular case.
Citation: Jianquan Li, Yanni Xiao, Yali Yang. Global analysis of a simple parasite-host model with homoclinic orbits. Mathematical Biosciences & Engineering, 2012, 9 (4) : 767-784. doi: 10.3934/mbe.2012.9.767
References:
[1]

D. Ebert, M. Lipsitch and K. L. Mangin, The effect of parasites on host population density and extinction: Experimental epidemiology with Daphnia and six microparasites,, American Naturalist, 156 (2000), 459.  doi: 10.1086/303404.  Google Scholar

[2]

T.-W. Hwang and Y. Kuang, Deterministic extinction effect of parasites on host populations,, J. Math. Biol., 46 (2003), 17.  doi: 10.1007/s00285-002-0165-7.  Google Scholar

[3]

Kaifa Wang and Y. Kuang, Fluctuation and extinction dynamics in host-microparasite systems,, Comm. Pure Appl. Anal., 10 (2011), 1537.  doi: 10.3934/cpaa.2011.10.1537.  Google Scholar

[4]

S. Hews, S. Eikenberry, J. D. Nagy and Y. Kuang, Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth,, J. Math. Biol., 60 (2010), 573.  doi: 10.1007/s00285-009-0278-3.  Google Scholar

[5]

S. Eikenberry, S. Hews, J. D. Nagy and Y. Kuang, The dynamics of a delay model of HBV infection with logistic hepatocyte growth,, Math. Biosc. Eng., 6 (2009), 283.   Google Scholar

[6]

F. Berezovsky, G. Karev, B. Song and C. Castillo-Chavez, A simple epidemic model with surprising dynamics,, Math. Biosci. Eng., 2 (2005), 133.   Google Scholar

[7]

Z. Zhang, T. Ding, et al., "Qualitative Theory of Differential Equations,", Translations of Mathematical Monographs, (1992).   Google Scholar

[8]

Zhien Ma and Jia Li, "Dynamical Modeling and Analysis of Epidemics,", Singapore, (2009).   Google Scholar

show all references

References:
[1]

D. Ebert, M. Lipsitch and K. L. Mangin, The effect of parasites on host population density and extinction: Experimental epidemiology with Daphnia and six microparasites,, American Naturalist, 156 (2000), 459.  doi: 10.1086/303404.  Google Scholar

[2]

T.-W. Hwang and Y. Kuang, Deterministic extinction effect of parasites on host populations,, J. Math. Biol., 46 (2003), 17.  doi: 10.1007/s00285-002-0165-7.  Google Scholar

[3]

Kaifa Wang and Y. Kuang, Fluctuation and extinction dynamics in host-microparasite systems,, Comm. Pure Appl. Anal., 10 (2011), 1537.  doi: 10.3934/cpaa.2011.10.1537.  Google Scholar

[4]

S. Hews, S. Eikenberry, J. D. Nagy and Y. Kuang, Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth,, J. Math. Biol., 60 (2010), 573.  doi: 10.1007/s00285-009-0278-3.  Google Scholar

[5]

S. Eikenberry, S. Hews, J. D. Nagy and Y. Kuang, The dynamics of a delay model of HBV infection with logistic hepatocyte growth,, Math. Biosc. Eng., 6 (2009), 283.   Google Scholar

[6]

F. Berezovsky, G. Karev, B. Song and C. Castillo-Chavez, A simple epidemic model with surprising dynamics,, Math. Biosci. Eng., 2 (2005), 133.   Google Scholar

[7]

Z. Zhang, T. Ding, et al., "Qualitative Theory of Differential Equations,", Translations of Mathematical Monographs, (1992).   Google Scholar

[8]

Zhien Ma and Jia Li, "Dynamical Modeling and Analysis of Epidemics,", Singapore, (2009).   Google Scholar

[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[3]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[4]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[6]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[9]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[10]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[11]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[12]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[13]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[14]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[15]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[16]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[17]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[18]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[19]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[20]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]