• Previous Article
    Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes
  • MBE Home
  • This Issue
  • Next Article
    The impact of migrant workers on the tuberculosis transmission: General models and a case study for China
2012, 9(4): 809-817. doi: 10.3934/mbe.2012.9.809

Low viral persistence of an immunological model

1. 

Department of Mathematics, China Agricultural University, Beijing 100083

Received  July 2011 Revised  May 2012 Published  October 2012

Hepatitis B virus can persist at very low levels in the body in the face of host immunity, and reactive during immunosuppression and sustain the immunological memory to lead to the possible state of 'infection immunity'. To analyze this phenomena quantitatively, a mathematical model which is described by DDEs with relative to cytotoxic T lymphocyte (CTL) response to Hepatitis B virus is used. Using the knowledge of DDEs and the numerical bifurcation analysis techniques, the dynamical behavior of Hopf bifurcation which may lead to the periodic oscillation of populations is analyzed. Domains of low level viral persistence which is possible, either as a stable equilibrium or a stable oscillatory pattern, are identified in parameter space. The virus replication rate appears to have influence to the amplitude of the persisting oscillatory population densities.
Citation: Suqi Ma. Low viral persistence of an immunological model. Mathematical Biosciences & Engineering, 2012, 9 (4) : 809-817. doi: 10.3934/mbe.2012.9.809
References:
[1]

P. M. Argium, P. E. Kozarsky and C. Reed, "CDC Health Information for International Travel 2008,", Elsevier, (2007).   Google Scholar

[2]

S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection,, J. Biological Dynamic, 2 (2008), 140.  doi: 10.1080/17513750701769873.  Google Scholar

[3]

R. M. Zinkernagel, What is missing in immunology to understand immunity?,, Nat. Immunol., 1 (2000), 181.  doi: 10.1038/79712.  Google Scholar

[4]

B. Rehermann, C. Ferrari, C. Pasquinelli and F. V. Chisari, The hepatitis B virus persists for decades after patient's recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response,, Nat. Med., 2 (1996), 1104.  doi: 10.1038/nm1096-1104.  Google Scholar

[5]

L. Tatyana, R. Dirk and B. Gennady, Numerical bifurcation analysis of immunological models with time delays,, Journal of Computational and Applied Mathematics, 184 (2005), 165.  doi: 10.1016/j.cam.2004.08.019.  Google Scholar

[6]

L. Tatyana and E. Koen, Low level viral persistence after infection with LCMV: A quantitative insight through numerical bifurcation analysis,, Mathematical Biosciences, 173 (2001), 1.  doi: 10.1016/S0025-5564(01)00072-4.  Google Scholar

[7]

G. Bocharov and B. Ludewig, etc., Underwhelming the immune response: Effect of slow virus growth rates on $CD8^+ T$ lymphocyte responses,, J. Virol., 78 (2004), 2247.  doi: 10.1128/JVI.78.5.2247-2254.2004.  Google Scholar

[8]

C. T. H. Baker, Retarded differential equations,, J. Comput. Appl. Math., 125 (2000), 309.  doi: 10.1016/S0377-0427(00)00476-3.  Google Scholar

[9]

G. A. Bocharov and F. A. Rihan, Numerical modelling in biosciences using delay differential equations,, J. Comput. Appl. Math., 125 (2000), 183.  doi: 10.1016/S0377-0427(00)00468-4.  Google Scholar

[10]

Z. H. Wang and H. Y. Hu, Stability switches of time-delayed dynamic systems with unknown parameters,, Journal of Sound and Vibration, 233 (2000), 215.  doi: 10.1006/jsvi.1999.2817.  Google Scholar

[11]

Z. H. Wang and H. Y. Hu, Delay independent stability of retarded dynamic system of multiple degrees of freedom,, Journal of Sound and Vibration, 226 (1999), 57.  doi: 10.1006/jsvi.1999.2282.  Google Scholar

[12]

S. Q. Ma, Z. S. Feng and Q. S. Lu, The double Hopf bifurcation of a neuron model with time delay,, Int. J. Bifurcation and Chaos, 19 (2009), 3733.  doi: 10.1142/S0218127409025080.  Google Scholar

[13]

S. Q. Ma and Z. S. Feng, Fold-Hopf Bifurcation of the Rose-Hindmarsh model with time delay,, Int. J. Bifurcation and Chaos, 19 (2011), 437.  doi: 10.1142/S0218127411028490.  Google Scholar

[14]

K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations,, J. Comput. Appl. Math., 125 (2000), 265.  doi: 10.1016/S0377-0427(00)00472-6.  Google Scholar

[15]

K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL,, ACM Trans. Math. Software, 28 (2002), 1.  doi: 10.1145/513001.513002.  Google Scholar

show all references

References:
[1]

P. M. Argium, P. E. Kozarsky and C. Reed, "CDC Health Information for International Travel 2008,", Elsevier, (2007).   Google Scholar

[2]

S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection,, J. Biological Dynamic, 2 (2008), 140.  doi: 10.1080/17513750701769873.  Google Scholar

[3]

R. M. Zinkernagel, What is missing in immunology to understand immunity?,, Nat. Immunol., 1 (2000), 181.  doi: 10.1038/79712.  Google Scholar

[4]

B. Rehermann, C. Ferrari, C. Pasquinelli and F. V. Chisari, The hepatitis B virus persists for decades after patient's recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response,, Nat. Med., 2 (1996), 1104.  doi: 10.1038/nm1096-1104.  Google Scholar

[5]

L. Tatyana, R. Dirk and B. Gennady, Numerical bifurcation analysis of immunological models with time delays,, Journal of Computational and Applied Mathematics, 184 (2005), 165.  doi: 10.1016/j.cam.2004.08.019.  Google Scholar

[6]

L. Tatyana and E. Koen, Low level viral persistence after infection with LCMV: A quantitative insight through numerical bifurcation analysis,, Mathematical Biosciences, 173 (2001), 1.  doi: 10.1016/S0025-5564(01)00072-4.  Google Scholar

[7]

G. Bocharov and B. Ludewig, etc., Underwhelming the immune response: Effect of slow virus growth rates on $CD8^+ T$ lymphocyte responses,, J. Virol., 78 (2004), 2247.  doi: 10.1128/JVI.78.5.2247-2254.2004.  Google Scholar

[8]

C. T. H. Baker, Retarded differential equations,, J. Comput. Appl. Math., 125 (2000), 309.  doi: 10.1016/S0377-0427(00)00476-3.  Google Scholar

[9]

G. A. Bocharov and F. A. Rihan, Numerical modelling in biosciences using delay differential equations,, J. Comput. Appl. Math., 125 (2000), 183.  doi: 10.1016/S0377-0427(00)00468-4.  Google Scholar

[10]

Z. H. Wang and H. Y. Hu, Stability switches of time-delayed dynamic systems with unknown parameters,, Journal of Sound and Vibration, 233 (2000), 215.  doi: 10.1006/jsvi.1999.2817.  Google Scholar

[11]

Z. H. Wang and H. Y. Hu, Delay independent stability of retarded dynamic system of multiple degrees of freedom,, Journal of Sound and Vibration, 226 (1999), 57.  doi: 10.1006/jsvi.1999.2282.  Google Scholar

[12]

S. Q. Ma, Z. S. Feng and Q. S. Lu, The double Hopf bifurcation of a neuron model with time delay,, Int. J. Bifurcation and Chaos, 19 (2009), 3733.  doi: 10.1142/S0218127409025080.  Google Scholar

[13]

S. Q. Ma and Z. S. Feng, Fold-Hopf Bifurcation of the Rose-Hindmarsh model with time delay,, Int. J. Bifurcation and Chaos, 19 (2011), 437.  doi: 10.1142/S0218127411028490.  Google Scholar

[14]

K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations,, J. Comput. Appl. Math., 125 (2000), 265.  doi: 10.1016/S0377-0427(00)00472-6.  Google Scholar

[15]

K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL,, ACM Trans. Math. Software, 28 (2002), 1.  doi: 10.1145/513001.513002.  Google Scholar

[1]

Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261

[2]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[3]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[6]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[7]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[8]

Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352

[9]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[10]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[11]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[12]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[13]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[14]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[15]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[16]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[17]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[18]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, 2021, 20 (2) : 559-582. doi: 10.3934/cpaa.2020281

[19]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[20]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]