Citation: |
[1] |
E. Allen, "Modeling with Itô Stochastic Differential Equations," Springer, Dordrecht, The Netherlands, 2007. |
[2] |
E. J. Allen, L. J. S. Allen, A. Arciniega and P. E. Greenwood, Construction of equivalent stochastic differential equation models, Stochastic Analysis and Applications, 26 (2008), 274-297.doi: 10.1080/07362990701857129. |
[3] |
L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology," $2^{nd}$ edition, Chapman Hall/CRC Press, Boca Raton, FL, 2010. |
[4] |
D. Burg, L. Rong, A. U. Neumann and H. Dahari, Mathematical modeling of viral kinetics under immune control during primary HIV-1 infection, Journal of Theoretical Biology, 259 (2009), 751-759.doi: 10.1016/j.jtbi.2009.04.010. |
[5] |
D. Chao, M. Davenport, S. Forrest and A. Perelson, A stochastic model of cytotoxic T cell responses, Journal of Theoretical Biology, 228 (2004), 227-240.doi: 10.1016/j.jtbi.2003.12.011. |
[6] |
E. T. Clayson, L. V. Jones Brando and R. W. Compans, Release of simian virus 40 virions from epithelial cells is polarized and occurs without cell lysis, Journal of Virology, 63 (1989), 2278-2288. |
[7] |
A. J. Ekanayake and L. J. S. Allen, Comparison of Markov chain and stochastic differential equation population models under higher-order moment closure approximations, Stochastic Analysis and Applications, 28 (2010), 907-927.doi: 10.1080/07362990903415882. |
[8] |
D. T. Gillespie, The chemical Langevin equation, The Journal of Chemical Physics, 113 (2000), 297-306.doi: 10.1063/1.481811. |
[9] |
J. Heesterbeek and M. G. Roberts, The type-reproduction number T in models for infectious disease control, Mathematical Biosciences, 206 (2007), 3-10.doi: 10.1016/j.mbs.2004.10.013. |
[10] |
C. B. Jonsson, L. T. M. Figueiredo and O. Vapalahti, A global perspective on hantavirus ecology, epidemiology, and disease, Clinical Microbiology Reviews, 23 (2010), 412-441.doi: 10.1128/CMR.00062-09. |
[11] |
J. C. Kamgang and G. Sallet, Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE), Mathematical Biosciences, 213 (2008), 1-12.doi: 10.1016/j.mbs.2008.02.005. |
[12] |
H. Kamina, R. Makuch and H. Zhao, A stochastic modeling of early HIV-1 population dynamics, Mathematical Biosciences, 170 (2001), 187-198.doi: 10.1016/S0025-5564(00)00069-9. |
[13] |
M. J. Keeling, Metapopulation moments: Coupling, stochasticity and persistence, Journal of Animal Ecology, 69 (2000), 725-736.doi: 10.1046/j.1365-2656.2000.00430.x. |
[14] |
M. J. Keeling, Multiplicative moments and measure of persistence in ecology, Journal of Theoretical Biology, 205 (2000), 269-281.doi: 10.1006/jtbi.2000.2066. |
[15] |
N. L. Komarova, Viral reproductive strategies: How can lytic viruses be evolutionarily competitive?, Journal of Theoretical Biology, 249 (2007), 766-784.doi: 10.1016/j.jtbi.2007.09.013. |
[16] |
I. Krishnarajah, A. Cook, G. Marion and G. Gibson, Novel moment closure approximations in stochastic epidemics, Bulletin of Mathematical Biology, 67 (2005), 855-873.doi: 10.1016/j.bulm.2004.11.002. |
[17] |
T. G. Kurtz, Strong approximation theorems for density dependent Markov chains, Stochastic Processes and their Applications, 6 (1978), 223-240. |
[18] |
A. L. Lloyd, Estimating variability in models for recurrent epidemics: Assessing the use of moment closure techniques, Theoretical Population Biology, 65 (2004), 49-65.doi: 10.1016/j.tpb.2003.07.002. |
[19] |
J. H. Matis and T. Kiffe, "Stochastic Population Models," Springer, New York, Berlin and Heidelberg, 2000. |
[20] |
M. N. Matrosovich, T. Y. Matrosovich, T. Gray, N. A. Roberts and H. D. Klenk, Human and avian influenza viruses target different cell types in cultures of human airway epithelium, Proceedings of the National Academy of Sciences, 101 (2004), 4620-4624.doi: 10.1073/pnas.0308001101. |
[21] |
M. A. Nowak and R. M. May, "Virus Dynamics," Oxford Univ. Press, New York, 2000. |
[22] |
B. Øksendal, "Stochastic Differential Equations: An Introduction with Applications," Springer, Verlag, Berlin, Heidelberg, $5^{th}$ edition, 2000. |
[23] |
J. E. Pearson, P. Krapivsky and A. S. Perelson, Stochastic theory of early viral infection: continuous versus burst production of virions, PLoS Computational Biology, 7 (2011), 1-17. |
[24] |
A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV infection of CD4+ T cells, Mathematical Biosciences, 114 (1993), 81-125.doi: 10.1016/0025-5564(93)90043-A. |
[25] |
A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Review, 41 (1999), 3-44.doi: 10.1137/S0036144598335107. |
[26] |
A. N. Phillips, Reduction of HIV concentration during acute infection: independence from a specific immune response, Science, 271 (1996), 497-499.doi: 10.1126/science.271.5248.497. |
[27] |
M. G. Roberts and J. Heesterbeek, A new method to estimate the effort required to control an infectious disease, Proceedings of the Royal Society London B, 270 (2003), 1359-1364.doi: 10.1098/rspb.2003.2339. |
[28] |
A. Singh and J. P. Hespanha, Moment closure techniques for stochastic models in population biology, Proceedings of the 2006 American Control Conference, (2006), 4730-4735. |
[29] |
W. Y. Tan and H. Wu, Stochastic modeling of the dynamics of CD4+ T-cells infection by HIV and some Monte-Carlo studies, Mathematical Biosciences, 147 (1998), 173-205doi: 10.1016/S0025-5564(97)00094-1. |
[30] |
H. Tuckwell and F. Wan, First passage time to detection in stochastic population dynamical models for HIV-1, Applied Mathematics Letters, 13 (2000), 79-83.doi: 10.1016/S0893-9659(00)00037-9. |
[31] |
H. C. Tuckwell and E. Le Corfec, A stochastic model for early HIV-1 population dynamics, Journal of Theoretical Biology, 195 (1998), 451-463.doi: 10.1006/jtbi.1998.0806. |
[32] |
P. van den Driesssche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6. |
[33] |
P. van den Driesssche and J. Watmough, Chapter 6: Further notes on the basic reproduction number, in "Mathematical Epidemiology" (eds. F. Brauer, P. van den Driessche and J. Wu), Springer, Verlag, Berlin, Heidelberg, (2008), 159-178. |
[34] |
F. Verhulst, "Nonlinear Differential Equations and Dynamical Systems," Springer-Verlag, Berlin, Heidelberg, New York, 1985. |
[35] |
S. W. Vidurupola, "Deterministic and Stochastic Models for Early Viral Infection within a Host," M. S. Thesis, Texas Tech University, Lubbock, Texas, U.S.A., 2010. |
[36] |
D. Wodarz and M. A. Nowak, Mathematical models of HIV pathogenesis and treatment, BioEssays, 24 (2002), 1178-1187.doi: 10.1002/bies.10196. |
[37] |
Y. Yuan and L. J. S. Allen, Stochastic models for virus and immune system dynamics, Mathematical Biosciences, 234 (2011), 84-94.doi: 10.1016/j.mbs.2011.08.007. |
[38] |
S. R. Zaki, P. W. Greer, L. M. Coffield, C. S. Goldsmith, K. B. Nolte, K. Foucar, R. M. Feddersen, R. E. Zumwalt, G. L. Miller, A. S. Khan, P. E. Rollin, T. G. Ksiazek, S. T. Nichol, B. W. J. Mahy and C. J. Peters, Hantavirus pulmonary syndrome: Pathogenesis of an emerging infectious disease, American Journal of Pathology, 146 (1995), 552-578. |