2012, 9(4): 937-952. doi: 10.3934/mbe.2012.9.937

Dynamics of stochastic mutation to immunodominance

1. 

Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, United States, United States

2. 

Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996

Received  September 2009 Revised  September 2010 Published  October 2012

Although a virus contains several epitopes that can be recognized by cytotoxic T lymphocytes (CTL), the immune responses against different epitopes are not uniform. Only a few CTLs (sometimes just one) will be immunodominant. Mutation of epitopes has been recognized as an important mechanism of immunodominance. Previous research has studied the influences of sporadic, discrete mutation events. In this work, we introduce a bounded noise term to account for the intrinsic stochastic nature of mutation. Monte Carlo simulations of the stochastic model show abounding complex phenomena, and patterns observed from the numerical simulations shed lights on long term trends of immunodominance.
Citation: Yu Wu, Xiaopeng Zhao, Mingjun Zhang. Dynamics of stochastic mutation to immunodominance. Mathematical Biosciences & Engineering, 2012, 9 (4) : 937-952. doi: 10.3934/mbe.2012.9.937
References:
[1]

M. A. Nowak, R. M. May and K. Sigmund, Immune responses against multiple epitopes,, J. Theor. Biol., 175 (1995), 325. doi: 10.1006/jtbi.1995.0146. Google Scholar

[2]

M. A. Nowak, Immune responses against multiple epitopes: a theory for immunodominance and antigenic variation,, Semin. Virol., 7 (1996), 83. doi: 10.1006/smvy.1996.0010. Google Scholar

[3]

D. Wodarz, "Killer Cell Dynamics: Mathematical and Computational Approaches to Immunology,", Springer, (2007). Google Scholar

[4]

L. Adorini, E. Appella, G. Doria and Z. A. Nagy, Mechanisms influencing the immunodominance of T cell determinants,, J. Exp. Med., 168 (1988), 2091. doi: 10.1084/jem.168.6.2091. Google Scholar

[5]

A. J. McMichael and R. E. Phillips, Escape of human immunodeficiency virus from immune control,, Annu. Rev. Immunol., 15 (1997), 271. doi: 10.1146/annurev.immunol.15.1.271. Google Scholar

[6]

P. J. R. Goulder, et al., Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS,, Nature Med., 3 (1997), 212. doi: 10.1038/nm0297-212. Google Scholar

[7]

P. J. R. Goulder, et al., Patterns of immunodominance in HIV-1-specific cytotoxic T lymphocyte responses in two human histocompatibility leukocyte antigens (HLA)-identical siblings with HLA-A*0201 are influenced by epitope mutation,, J. Exp. Med., 185 (1997), 1423. doi: 10.1084/jem.185.8.1423. Google Scholar

[8]

J. W. Yewdell and J. R. Bennink, Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses,, Annu. Rev. Immunol., 17 (1999), 51. doi: 10.1146/annurev.immunol.17.1.51. Google Scholar

[9]

S. Gupta and R. M. Anderson, Population structure of pathogens: the role of immune selection,, Parasitology Today, 15 (1999), 497. doi: 10.1016/S0169-4758(99)01559-8. Google Scholar

[10]

C. C. Bergmann, J. D. Altman, D. Hinton and S. A. Stohlman, Inverted immunodominance and impaired cytolytic function of CD8+ T cells during viral persistence in the central nervous system,, J. Immunol. \textbf{163} (1999), 163 (1999), 3379. Google Scholar

[11]

W. S. Chen, L. C. Antón, J. R. Bennink and J. W. Yewdell, Dissecting the multifactorial causes of immunodominance in class I-restricted T cell responses to viruses,, Immunity, 12 (2000), 83. doi: 10.1016/S1074-7613(00)80161-2. Google Scholar

[12]

X. G. Yu, et al., Consistent patterns in the development and immunodominance of human immunodificiency virus type 1 (HIV-1)-specific CD8+ T-cell responses following acute HIV-1 infection,, J. Virol., 76 (2002), 8690. doi: 10.1128/JVI.76.17.8690-8701.2002. Google Scholar

[13]

M. A. Brehm, A. K. Pinto, K. A. Daniels, J. P. Schneck, R. M. Welsh and L. K. Selin, T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens,, Nature Immunol., 3 (2002), 627. Google Scholar

[14]

U. Karrer, et al., Memory inflation: continuous accumulation of antiviral CD8+ T cells over time,, J. Immunol., 170 (2003), 2022. Google Scholar

[15]

E. J. Wherry, J. N. Blattman, K. Murali-Krishna, R. van der Most and R. Ahmed, Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment,, J. Virol., 77 (2003), 4911. doi: 10.1128/JVI.77.8.4911-4927.2003. Google Scholar

[16]

P. K. C. Goon, et al., Human T cell lymphotropic virus (HTLV) type-1-specific CD8+ T cells: frequency and immunodominance hierarchy,, J. Infect. Dis., 189 (2004), 2294. doi: 10.1086/420832. Google Scholar

[17]

R. Draenert, et al., Constraints on HIV-1 evolution and immunodominance revealed in monozygotic adult twins infected with the same virus,, J. Exp. Med., 203 (2006), 529. doi: 10.1084/jem.20052116. Google Scholar

[18]

M. A. Nowak, R. M. Anderson, A. R. McLean, T. F. W. Wolfs, J. Goudsmit and R. M. May, Antigenic diversity thresholds and the development of AIDS,, Science, 254 (1991), 963. doi: 10.1126/science.1683006. Google Scholar

[19]

M. A. Nowak, et al., Antigenic oscillations and shifting immunodominance in HIV-1 infections,, Nature, 375 (1995), 606. doi: 10.1038/375606a0. Google Scholar

[20]

D. Wodarz and M. A. Nowak, CD8 memory, immunodominance, and antigenic escape,, Eur. J. Immunol., 30 (2000), 2704. doi: 10.1002/1521-4141(200009)30:9<2704::AID-IMMU2704>3.0.CO;2-0. Google Scholar

[21]

M. A. Nowak and R. M. May, "Virus Dynamics: Mathematical Principles of Immunology and Virology,'', Oxford University Press, (2000). Google Scholar

[22]

C. L. Althaus and R. J. De Boer, Dynamics of immune escape during HIV/SIV infection,, PLOS Comput. Biol., 4 (2008). doi: 10.1371/journal.pcbi.1000103. Google Scholar

[23]

A. Handel and R. Antia, A simple methematical model helps to explain the immunodominance of CD8 T cells in influenza a virus infections,, J. Virol., 82 (2008), 7768. doi: 10.1128/JVI.00653-08. Google Scholar

[24]

M. A. Nowak, R. M. May and R. M. Anderson, The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease,, AIDS, 4 (1990), 1095. doi: 10.1097/00002030-199011000-00007. Google Scholar

[25]

M. A. Nowak and R. M. May, Coexistence and competition in HIV infections,, J. Theor. Biol., 159 (1992), 329. doi: 10.1016/S0022-5193(05)80728-3. Google Scholar

[26]

M. A. Nowak and R. M. May, AIDS pathogenesis: mathematical models of HIV and SIV infections,, AIDS 7, 1 (1993). doi: 10.1097/00002030-199301001-00002. Google Scholar

[27]

R. M. Anderson, Mathematical studies of parasitic infection and immunity,, Science, 264 (1994), 1884. doi: 10.1126/science.8009218. Google Scholar

[28]

Y. K. Lin and G. Q. Cai, "Probabilistic Structural Dynamics: Advanced Theory and Applications,'', McGraw-Hill, (1995). Google Scholar

[29]

W. Q. Zhu, Z. L. Huang, J. M. Ko and Y. Q. Ni, Optimal feedback control of strongly non-linear systems excited by bounded noise,, J. Sound Vib., 274 (2004), 701. doi: 10.1016/S0022-460X(03)00746-6. Google Scholar

[30]

Z. L. Huang, W. Q. Zhu, Y. Q. Ni and J. M. Ko, Stochastic averaging of strongly non-linear oscillators under bounded noise excitation,, J. Sound Vib., 254 (2002), 245. doi: 10.1006/jsvi.2001.4093. Google Scholar

show all references

References:
[1]

M. A. Nowak, R. M. May and K. Sigmund, Immune responses against multiple epitopes,, J. Theor. Biol., 175 (1995), 325. doi: 10.1006/jtbi.1995.0146. Google Scholar

[2]

M. A. Nowak, Immune responses against multiple epitopes: a theory for immunodominance and antigenic variation,, Semin. Virol., 7 (1996), 83. doi: 10.1006/smvy.1996.0010. Google Scholar

[3]

D. Wodarz, "Killer Cell Dynamics: Mathematical and Computational Approaches to Immunology,", Springer, (2007). Google Scholar

[4]

L. Adorini, E. Appella, G. Doria and Z. A. Nagy, Mechanisms influencing the immunodominance of T cell determinants,, J. Exp. Med., 168 (1988), 2091. doi: 10.1084/jem.168.6.2091. Google Scholar

[5]

A. J. McMichael and R. E. Phillips, Escape of human immunodeficiency virus from immune control,, Annu. Rev. Immunol., 15 (1997), 271. doi: 10.1146/annurev.immunol.15.1.271. Google Scholar

[6]

P. J. R. Goulder, et al., Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS,, Nature Med., 3 (1997), 212. doi: 10.1038/nm0297-212. Google Scholar

[7]

P. J. R. Goulder, et al., Patterns of immunodominance in HIV-1-specific cytotoxic T lymphocyte responses in two human histocompatibility leukocyte antigens (HLA)-identical siblings with HLA-A*0201 are influenced by epitope mutation,, J. Exp. Med., 185 (1997), 1423. doi: 10.1084/jem.185.8.1423. Google Scholar

[8]

J. W. Yewdell and J. R. Bennink, Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses,, Annu. Rev. Immunol., 17 (1999), 51. doi: 10.1146/annurev.immunol.17.1.51. Google Scholar

[9]

S. Gupta and R. M. Anderson, Population structure of pathogens: the role of immune selection,, Parasitology Today, 15 (1999), 497. doi: 10.1016/S0169-4758(99)01559-8. Google Scholar

[10]

C. C. Bergmann, J. D. Altman, D. Hinton and S. A. Stohlman, Inverted immunodominance and impaired cytolytic function of CD8+ T cells during viral persistence in the central nervous system,, J. Immunol. \textbf{163} (1999), 163 (1999), 3379. Google Scholar

[11]

W. S. Chen, L. C. Antón, J. R. Bennink and J. W. Yewdell, Dissecting the multifactorial causes of immunodominance in class I-restricted T cell responses to viruses,, Immunity, 12 (2000), 83. doi: 10.1016/S1074-7613(00)80161-2. Google Scholar

[12]

X. G. Yu, et al., Consistent patterns in the development and immunodominance of human immunodificiency virus type 1 (HIV-1)-specific CD8+ T-cell responses following acute HIV-1 infection,, J. Virol., 76 (2002), 8690. doi: 10.1128/JVI.76.17.8690-8701.2002. Google Scholar

[13]

M. A. Brehm, A. K. Pinto, K. A. Daniels, J. P. Schneck, R. M. Welsh and L. K. Selin, T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens,, Nature Immunol., 3 (2002), 627. Google Scholar

[14]

U. Karrer, et al., Memory inflation: continuous accumulation of antiviral CD8+ T cells over time,, J. Immunol., 170 (2003), 2022. Google Scholar

[15]

E. J. Wherry, J. N. Blattman, K. Murali-Krishna, R. van der Most and R. Ahmed, Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment,, J. Virol., 77 (2003), 4911. doi: 10.1128/JVI.77.8.4911-4927.2003. Google Scholar

[16]

P. K. C. Goon, et al., Human T cell lymphotropic virus (HTLV) type-1-specific CD8+ T cells: frequency and immunodominance hierarchy,, J. Infect. Dis., 189 (2004), 2294. doi: 10.1086/420832. Google Scholar

[17]

R. Draenert, et al., Constraints on HIV-1 evolution and immunodominance revealed in monozygotic adult twins infected with the same virus,, J. Exp. Med., 203 (2006), 529. doi: 10.1084/jem.20052116. Google Scholar

[18]

M. A. Nowak, R. M. Anderson, A. R. McLean, T. F. W. Wolfs, J. Goudsmit and R. M. May, Antigenic diversity thresholds and the development of AIDS,, Science, 254 (1991), 963. doi: 10.1126/science.1683006. Google Scholar

[19]

M. A. Nowak, et al., Antigenic oscillations and shifting immunodominance in HIV-1 infections,, Nature, 375 (1995), 606. doi: 10.1038/375606a0. Google Scholar

[20]

D. Wodarz and M. A. Nowak, CD8 memory, immunodominance, and antigenic escape,, Eur. J. Immunol., 30 (2000), 2704. doi: 10.1002/1521-4141(200009)30:9<2704::AID-IMMU2704>3.0.CO;2-0. Google Scholar

[21]

M. A. Nowak and R. M. May, "Virus Dynamics: Mathematical Principles of Immunology and Virology,'', Oxford University Press, (2000). Google Scholar

[22]

C. L. Althaus and R. J. De Boer, Dynamics of immune escape during HIV/SIV infection,, PLOS Comput. Biol., 4 (2008). doi: 10.1371/journal.pcbi.1000103. Google Scholar

[23]

A. Handel and R. Antia, A simple methematical model helps to explain the immunodominance of CD8 T cells in influenza a virus infections,, J. Virol., 82 (2008), 7768. doi: 10.1128/JVI.00653-08. Google Scholar

[24]

M. A. Nowak, R. M. May and R. M. Anderson, The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease,, AIDS, 4 (1990), 1095. doi: 10.1097/00002030-199011000-00007. Google Scholar

[25]

M. A. Nowak and R. M. May, Coexistence and competition in HIV infections,, J. Theor. Biol., 159 (1992), 329. doi: 10.1016/S0022-5193(05)80728-3. Google Scholar

[26]

M. A. Nowak and R. M. May, AIDS pathogenesis: mathematical models of HIV and SIV infections,, AIDS 7, 1 (1993). doi: 10.1097/00002030-199301001-00002. Google Scholar

[27]

R. M. Anderson, Mathematical studies of parasitic infection and immunity,, Science, 264 (1994), 1884. doi: 10.1126/science.8009218. Google Scholar

[28]

Y. K. Lin and G. Q. Cai, "Probabilistic Structural Dynamics: Advanced Theory and Applications,'', McGraw-Hill, (1995). Google Scholar

[29]

W. Q. Zhu, Z. L. Huang, J. M. Ko and Y. Q. Ni, Optimal feedback control of strongly non-linear systems excited by bounded noise,, J. Sound Vib., 274 (2004), 701. doi: 10.1016/S0022-460X(03)00746-6. Google Scholar

[30]

Z. L. Huang, W. Q. Zhu, Y. Q. Ni and J. M. Ko, Stochastic averaging of strongly non-linear oscillators under bounded noise excitation,, J. Sound Vib., 254 (2002), 245. doi: 10.1006/jsvi.2001.4093. Google Scholar

[1]

Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683

[2]

Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3881-3903. doi: 10.3934/dcdsb.2018335

[3]

Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81

[4]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[5]

Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125

[6]

Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313

[7]

Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803

[8]

Mazyar Zahedi-Seresht, Gholam-Reza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 403-416. doi: 10.3934/naco.2017025

[9]

Azmy S. Ackleh, Shuhua Hu. Comparison between stochastic and deterministic selection-mutation models. Mathematical Biosciences & Engineering, 2007, 4 (2) : 133-157. doi: 10.3934/mbe.2007.4.133

[10]

Dianmo Li, Zengxiang Gao, Zufei Ma, Baoyu Xie, Zhengjun Wang. Two general models for the simulation of insect population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 623-628. doi: 10.3934/dcdsb.2004.4.623

[11]

Péter Koltai. A stochastic approach for computing the domain of attraction without trajectory simulation. Conference Publications, 2011, 2011 (Special) : 854-863. doi: 10.3934/proc.2011.2011.854

[12]

Filippo Terragni, José M. Vega. Simulation of complex dynamics using POD 'on the fly' and residual estimates. Conference Publications, 2015, 2015 (special) : 1060-1069. doi: 10.3934/proc.2015.1060

[13]

Zhongyi Huang, Peter A. Markowich, Christof Sparber. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics. Kinetic & Related Models, 2010, 3 (1) : 181-194. doi: 10.3934/krm.2010.3.181

[14]

Jianhua Huang, Tianlong Shen, Yuhong Li. Dynamics of stochastic fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2051-2067. doi: 10.3934/dcdsb.2015.20.2051

[15]

Giuseppe Toscani. A kinetic description of mutation processes in bacteria. Kinetic & Related Models, 2013, 6 (4) : 1043-1055. doi: 10.3934/krm.2013.6.1043

[16]

Jean-Paul Arnaout, Georges Arnaout, John El Khoury. Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1215-1225. doi: 10.3934/jimo.2016.12.1215

[17]

Michele L. Joyner, Chelsea R. Ross, Colton Watts, Thomas C. Jones. A stochastic simulation model for Anelosimus studiosus during prey capture: A case study for determination of optimal spacing. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1411-1429. doi: 10.3934/mbe.2014.11.1411

[18]

MirosŁaw Lachowicz, Tatiana Ryabukha. Equilibrium solutions for microscopic stochastic systems in population dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 777-786. doi: 10.3934/mbe.2013.10.777

[19]

T. Caraballo, M. J. Garrido-Atienza, J. López-de-la-Cruz. Dynamics of some stochastic chemostat models with multiplicative noise. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1893-1914. doi: 10.3934/cpaa.2017092

[20]

Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]