2012, 9(1): 97-110. doi: 10.3934/mbe.2012.9.97

Impact of discontinuous treatments on disease dynamics in an SIR epidemic model

1. 

College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, China, China

2. 

Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7

Received  September 2010 Revised  March 2011 Published  December 2011

We consider an SIR epidemic model with discontinuous treatment strategies. Under some reasonable assumptions on the discontinuous treatment function, we are able to determine the basic reproduction number $\mathcal{R}_0$, confirm the well-posedness of the model, describe the structure of possible equilibria as well as establish the stability/instability of the equilibria. Most interestingly, we find that in the case that an equilibrium is asymptotically stable, the convergence to the equilibrium can actually be achieved in finite time, and we can estimate this time in terms of the model parameters, initial sub-populations and the initial treatment strength. This suggests that from the view point of eliminating the disease from the host population, discontinuous treatment strategies would be superior to continuous ones. The methods we use to obtain the mathematical results are the generalized Lyapunov theory for discontinuous differential equations and some results on non-smooth analysis.
Citation: Zhenyuan Guo, Lihong Huang, Xingfu Zou. Impact of discontinuous treatments on disease dynamics in an SIR epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 97-110. doi: 10.3934/mbe.2012.9.97
References:
[1]

M. E. Alexander, C. Bowman, S. M. Moghadas, R. Summers, A. B. Gumel and B. M. Sahai, A vaccination model for transmission dynamics of influenza, SIAM J. Appl. Dyn. Syst., 3 (2004), 503-524. doi: 10.1137/030600370.

[2]

M. E. Alexander, S. M. Moghadas, P. Rohani and A. R. Summers, Modelling the effect of a booster vaccination on disease epidemiology, J. Math. Biol., 52 (2006), 290-306. doi: 10.1007/s00285-005-0356-0.

[3]

M. E. Alexander, S. M. Moghadas, G. Röst and J. Wu, A delay differential model for pandemic influenza with antiviral treatment, Bull. Math. Biol., 70 (2008), 382-397. doi: 10.1007/s11538-007-9257-2.

[4]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans, Dynamics and Control," Oxford University, Oxford, 1991.

[5]

J. Arino, C. McCluskey and P. van den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. Math., 64 (2003), 260-276. doi: 10.1137/S0036139902413829.

[6]

J. Arino, R. Jordan and P. van den Driessche, Quarantine in a multi-species epidemic model with spatial dynamics, Math. Biosci., 206 (2007), 46-60. doi: 10.1016/j.mbs.2005.09.002.

[7]

J.-P. Aubin and A. Cellina, "Differential Inclusions. Set-Valued Maps and Viability Theory," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 264, Springer-Verlag, Berlin, 1984.

[8]

A. Baciotti and F. Ceragioli, Stability and stabilization of discontinuous systems and nonsmooth Lyapunov function, ESAIM Control Optim. Calc. Var., 4 (1999), 361-376. doi: 10.1051/cocv:1999113.

[9]

F. Brauer, Backward bifurcations in simple vaccination models, J. Math. Anal. Appl., 298 (2004), 418-431. doi: 10.1016/j.jmaa.2004.05.045.

[10]

F. Brauer, Epidemic models with heterogeneous mixing and treatment, Bull. Math. Biol., 70 (2008), 1869-1885. doi: 10.1007/s11538-008-9326-1.

[11]

F. Brauer, P. van den Driessche and J. Wu, eds., "Mathematical Epidemiology," Lecture Notes in Mathematics, 1945, Mathematical Biosciences Subseries, Springer-Verlag, Berlin, 2008.

[12]

C. Castillo-Chavez and Z. Feng, To treat or not to treat: The case of tuberculosis, J. Math. Biol., 35 (1997), 629-656. doi: 10.1007/s002850050069.

[13]

F. Ceragioli, "Discontinuous Ordinary Differential Equations and Stabilization," Universita di Firenze, 2000.

[14]

F. H. Clarke, "Optimization and Non-Smooth Analysis," Wiley, New York, 1983.

[15]

Z. Feng, Final and peak epidemic sizes for SEIR models with quarantine and isolation, Math. Biosci. Eng., 4 (2007), 675-686. doi: 10.3934/mbe.2007.4.675.

[16]

Z. Feng and H. R. Thieme, Recurrent outbreaks of childhood diseases revisited: The impact of isolation, Math. Biosci., 128 (1995), 93-130. doi: 10.1016/0025-5564(94)00069-C.

[17]

A. F. Filippov, "Differential Equations with Discontinuous Righthand Sides," Translated from the Russian, Mathematics and its Applications (Soviet Series), 18, Kluwer Academic Publishers Group, Dordrecht, 1988.

[18]

M. Forti, M. Grazzini, P. Nistri and L. Pancioni, Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations, Phys. D, 214 (2006), 88-99. doi: 10.1016/j.physd.2005.12.006.

[19]

J. M. Hyman and J. Li, Modeling the effectiveness of isolation strategies in preventing STD epidemics, SIAM J. Appl. Math., 58 (1998), 912-925. doi: 10.1137/S003613999630561X.

[20]

M. Nuño, Z. Feng, M. Martcheva and C. Castillo-Chavez, Dynamics of two-strain influenza with isolation and partial cross-immunity, SIAM J. Appl. Math., 65 (2005), 964-982. doi: 10.1137/S003613990343882X.

[21]

W. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci., 201 (2006), 58-71. doi: 10.1016/j.mbs.2005.12.022.

[22]

L. Wu and Z. Feng, Homoclinic bifurcation in an SIQR model for childhood diseases, J. Differ. Equat., 168 (2000), 150-167.

[23]

X. Zhang and X. Liu, Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment, Nonl. Anal. RWA, 10 (2009), 565-575. doi: 10.1016/j.nonrwa.2007.10.011.

show all references

References:
[1]

M. E. Alexander, C. Bowman, S. M. Moghadas, R. Summers, A. B. Gumel and B. M. Sahai, A vaccination model for transmission dynamics of influenza, SIAM J. Appl. Dyn. Syst., 3 (2004), 503-524. doi: 10.1137/030600370.

[2]

M. E. Alexander, S. M. Moghadas, P. Rohani and A. R. Summers, Modelling the effect of a booster vaccination on disease epidemiology, J. Math. Biol., 52 (2006), 290-306. doi: 10.1007/s00285-005-0356-0.

[3]

M. E. Alexander, S. M. Moghadas, G. Röst and J. Wu, A delay differential model for pandemic influenza with antiviral treatment, Bull. Math. Biol., 70 (2008), 382-397. doi: 10.1007/s11538-007-9257-2.

[4]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans, Dynamics and Control," Oxford University, Oxford, 1991.

[5]

J. Arino, C. McCluskey and P. van den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. Math., 64 (2003), 260-276. doi: 10.1137/S0036139902413829.

[6]

J. Arino, R. Jordan and P. van den Driessche, Quarantine in a multi-species epidemic model with spatial dynamics, Math. Biosci., 206 (2007), 46-60. doi: 10.1016/j.mbs.2005.09.002.

[7]

J.-P. Aubin and A. Cellina, "Differential Inclusions. Set-Valued Maps and Viability Theory," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 264, Springer-Verlag, Berlin, 1984.

[8]

A. Baciotti and F. Ceragioli, Stability and stabilization of discontinuous systems and nonsmooth Lyapunov function, ESAIM Control Optim. Calc. Var., 4 (1999), 361-376. doi: 10.1051/cocv:1999113.

[9]

F. Brauer, Backward bifurcations in simple vaccination models, J. Math. Anal. Appl., 298 (2004), 418-431. doi: 10.1016/j.jmaa.2004.05.045.

[10]

F. Brauer, Epidemic models with heterogeneous mixing and treatment, Bull. Math. Biol., 70 (2008), 1869-1885. doi: 10.1007/s11538-008-9326-1.

[11]

F. Brauer, P. van den Driessche and J. Wu, eds., "Mathematical Epidemiology," Lecture Notes in Mathematics, 1945, Mathematical Biosciences Subseries, Springer-Verlag, Berlin, 2008.

[12]

C. Castillo-Chavez and Z. Feng, To treat or not to treat: The case of tuberculosis, J. Math. Biol., 35 (1997), 629-656. doi: 10.1007/s002850050069.

[13]

F. Ceragioli, "Discontinuous Ordinary Differential Equations and Stabilization," Universita di Firenze, 2000.

[14]

F. H. Clarke, "Optimization and Non-Smooth Analysis," Wiley, New York, 1983.

[15]

Z. Feng, Final and peak epidemic sizes for SEIR models with quarantine and isolation, Math. Biosci. Eng., 4 (2007), 675-686. doi: 10.3934/mbe.2007.4.675.

[16]

Z. Feng and H. R. Thieme, Recurrent outbreaks of childhood diseases revisited: The impact of isolation, Math. Biosci., 128 (1995), 93-130. doi: 10.1016/0025-5564(94)00069-C.

[17]

A. F. Filippov, "Differential Equations with Discontinuous Righthand Sides," Translated from the Russian, Mathematics and its Applications (Soviet Series), 18, Kluwer Academic Publishers Group, Dordrecht, 1988.

[18]

M. Forti, M. Grazzini, P. Nistri and L. Pancioni, Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations, Phys. D, 214 (2006), 88-99. doi: 10.1016/j.physd.2005.12.006.

[19]

J. M. Hyman and J. Li, Modeling the effectiveness of isolation strategies in preventing STD epidemics, SIAM J. Appl. Math., 58 (1998), 912-925. doi: 10.1137/S003613999630561X.

[20]

M. Nuño, Z. Feng, M. Martcheva and C. Castillo-Chavez, Dynamics of two-strain influenza with isolation and partial cross-immunity, SIAM J. Appl. Math., 65 (2005), 964-982. doi: 10.1137/S003613990343882X.

[21]

W. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci., 201 (2006), 58-71. doi: 10.1016/j.mbs.2005.12.022.

[22]

L. Wu and Z. Feng, Homoclinic bifurcation in an SIQR model for childhood diseases, J. Differ. Equat., 168 (2000), 150-167.

[23]

X. Zhang and X. Liu, Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment, Nonl. Anal. RWA, 10 (2009), 565-575. doi: 10.1016/j.nonrwa.2007.10.011.

[1]

Hiroshi Ito. Input-to-state stability and Lyapunov functions with explicit domains for SIR model of infectious diseases. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5171-5196. doi: 10.3934/dcdsb.2020338

[2]

Min Zhu, Xiaofei Guo, Zhigui Lin. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1565-1583. doi: 10.3934/mbe.2017081

[3]

C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008

[4]

Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105

[5]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[6]

Zhen Jin, Zhien Ma. The stability of an SIR epidemic model with time delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 101-109. doi: 10.3934/mbe.2006.3.101

[7]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure and Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[8]

Zuowei Cai, Jianhua Huang, Lihong Huang. Generalized Lyapunov-Razumikhin method for retarded differential inclusions: Applications to discontinuous neural networks. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3591-3614. doi: 10.3934/dcdsb.2017181

[9]

Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023

[10]

Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053

[11]

Xia Wang, Shengqiang Liu. Global properties of a delayed SIR epidemic model with multiple parallel infectious stages. Mathematical Biosciences & Engineering, 2012, 9 (3) : 685-695. doi: 10.3934/mbe.2012.9.685

[12]

W. E. Fitzgibbon, J. J. Morgan. Analysis of a reaction diffusion model for a reservoir supported spread of infectious disease. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6239-6259. doi: 10.3934/dcdsb.2019137

[13]

Yoshiaki Muroya, Yoichi Enatsu, Huaixing Li. A note on the global stability of an SEIR epidemic model with constant latency time and infectious period. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 173-183. doi: 10.3934/dcdsb.2013.18.173

[14]

Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 841-857. doi: 10.3934/dcdsb.2019192

[15]

Urszula Ledzewicz, Heinz Schättler. On optimal singular controls for a general SIR-model with vaccination and treatment. Conference Publications, 2011, 2011 (Special) : 981-990. doi: 10.3934/proc.2011.2011.981

[16]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[17]

Hiroshi Nishiura. Time variations in the generation time of an infectious disease: Implications for sampling to appropriately quantify transmission potential. Mathematical Biosciences & Engineering, 2010, 7 (4) : 851-869. doi: 10.3934/mbe.2010.7.851

[18]

Roberto A. Saenz, Herbert W. Hethcote. Competing species models with an infectious disease. Mathematical Biosciences & Engineering, 2006, 3 (1) : 219-235. doi: 10.3934/mbe.2006.3.219

[19]

Qingguang Guan, Max Gunzburger. Stability and convergence of time-stepping methods for a nonlocal model for diffusion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1315-1335. doi: 10.3934/dcdsb.2015.20.1315

[20]

Sanjeeva Balasuriya. Uncertainty in finite-time Lyapunov exponent computations. Journal of Computational Dynamics, 2020, 7 (2) : 313-337. doi: 10.3934/jcd.2020013

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]