2012, 9(1): 97-110. doi: 10.3934/mbe.2012.9.97

Impact of discontinuous treatments on disease dynamics in an SIR epidemic model

1. 

College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, China, China

2. 

Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7

Received  September 2010 Revised  March 2011 Published  December 2011

We consider an SIR epidemic model with discontinuous treatment strategies. Under some reasonable assumptions on the discontinuous treatment function, we are able to determine the basic reproduction number $\mathcal{R}_0$, confirm the well-posedness of the model, describe the structure of possible equilibria as well as establish the stability/instability of the equilibria. Most interestingly, we find that in the case that an equilibrium is asymptotically stable, the convergence to the equilibrium can actually be achieved in finite time, and we can estimate this time in terms of the model parameters, initial sub-populations and the initial treatment strength. This suggests that from the view point of eliminating the disease from the host population, discontinuous treatment strategies would be superior to continuous ones. The methods we use to obtain the mathematical results are the generalized Lyapunov theory for discontinuous differential equations and some results on non-smooth analysis.
Citation: Zhenyuan Guo, Lihong Huang, Xingfu Zou. Impact of discontinuous treatments on disease dynamics in an SIR epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 97-110. doi: 10.3934/mbe.2012.9.97
References:
[1]

M. E. Alexander, C. Bowman, S. M. Moghadas, R. Summers, A. B. Gumel and B. M. Sahai, A vaccination model for transmission dynamics of influenza,, SIAM J. Appl. Dyn. Syst., 3 (2004), 503.  doi: 10.1137/030600370.  Google Scholar

[2]

M. E. Alexander, S. M. Moghadas, P. Rohani and A. R. Summers, Modelling the effect of a booster vaccination on disease epidemiology,, J. Math. Biol., 52 (2006), 290.  doi: 10.1007/s00285-005-0356-0.  Google Scholar

[3]

M. E. Alexander, S. M. Moghadas, G. Röst and J. Wu, A delay differential model for pandemic influenza with antiviral treatment,, Bull. Math. Biol., 70 (2008), 382.  doi: 10.1007/s11538-007-9257-2.  Google Scholar

[4]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans, Dynamics and Control,", Oxford University, (1991).   Google Scholar

[5]

J. Arino, C. McCluskey and P. van den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation,, SIAM J. Appl. Math., 64 (2003), 260.  doi: 10.1137/S0036139902413829.  Google Scholar

[6]

J. Arino, R. Jordan and P. van den Driessche, Quarantine in a multi-species epidemic model with spatial dynamics,, Math. Biosci., 206 (2007), 46.  doi: 10.1016/j.mbs.2005.09.002.  Google Scholar

[7]

J.-P. Aubin and A. Cellina, "Differential Inclusions. Set-Valued Maps and Viability Theory,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 264 (1984).   Google Scholar

[8]

A. Baciotti and F. Ceragioli, Stability and stabilization of discontinuous systems and nonsmooth Lyapunov function,, ESAIM Control Optim. Calc. Var., 4 (1999), 361.  doi: 10.1051/cocv:1999113.  Google Scholar

[9]

F. Brauer, Backward bifurcations in simple vaccination models,, J. Math. Anal. Appl., 298 (2004), 418.  doi: 10.1016/j.jmaa.2004.05.045.  Google Scholar

[10]

F. Brauer, Epidemic models with heterogeneous mixing and treatment,, Bull. Math. Biol., 70 (2008), 1869.  doi: 10.1007/s11538-008-9326-1.  Google Scholar

[11]

F. Brauer, P. van den Driessche and J. Wu, eds., "Mathematical Epidemiology,", Lecture Notes in Mathematics, 1945 (2008).   Google Scholar

[12]

C. Castillo-Chavez and Z. Feng, To treat or not to treat: The case of tuberculosis,, J. Math. Biol., 35 (1997), 629.  doi: 10.1007/s002850050069.  Google Scholar

[13]

F. Ceragioli, "Discontinuous Ordinary Differential Equations and Stabilization,", Universita di Firenze, (2000).   Google Scholar

[14]

F. H. Clarke, "Optimization and Non-Smooth Analysis,", Wiley, (1983).   Google Scholar

[15]

Z. Feng, Final and peak epidemic sizes for SEIR models with quarantine and isolation,, Math. Biosci. Eng., 4 (2007), 675.  doi: 10.3934/mbe.2007.4.675.  Google Scholar

[16]

Z. Feng and H. R. Thieme, Recurrent outbreaks of childhood diseases revisited: The impact of isolation,, Math. Biosci., 128 (1995), 93.  doi: 10.1016/0025-5564(94)00069-C.  Google Scholar

[17]

A. F. Filippov, "Differential Equations with Discontinuous Righthand Sides,", Translated from the Russian, 18 (1988).   Google Scholar

[18]

M. Forti, M. Grazzini, P. Nistri and L. Pancioni, Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations,, Phys. D, 214 (2006), 88.  doi: 10.1016/j.physd.2005.12.006.  Google Scholar

[19]

J. M. Hyman and J. Li, Modeling the effectiveness of isolation strategies in preventing STD epidemics,, SIAM J. Appl. Math., 58 (1998), 912.  doi: 10.1137/S003613999630561X.  Google Scholar

[20]

M. Nuño, Z. Feng, M. Martcheva and C. Castillo-Chavez, Dynamics of two-strain influenza with isolation and partial cross-immunity,, SIAM J. Appl. Math., 65 (2005), 964.  doi: 10.1137/S003613990343882X.  Google Scholar

[21]

W. Wang, Backward bifurcation of an epidemic model with treatment,, Math. Biosci., 201 (2006), 58.  doi: 10.1016/j.mbs.2005.12.022.  Google Scholar

[22]

L. Wu and Z. Feng, Homoclinic bifurcation in an SIQR model for childhood diseases,, J. Differ. Equat., 168 (2000), 150.   Google Scholar

[23]

X. Zhang and X. Liu, Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment,, Nonl. Anal. RWA, 10 (2009), 565.  doi: 10.1016/j.nonrwa.2007.10.011.  Google Scholar

show all references

References:
[1]

M. E. Alexander, C. Bowman, S. M. Moghadas, R. Summers, A. B. Gumel and B. M. Sahai, A vaccination model for transmission dynamics of influenza,, SIAM J. Appl. Dyn. Syst., 3 (2004), 503.  doi: 10.1137/030600370.  Google Scholar

[2]

M. E. Alexander, S. M. Moghadas, P. Rohani and A. R. Summers, Modelling the effect of a booster vaccination on disease epidemiology,, J. Math. Biol., 52 (2006), 290.  doi: 10.1007/s00285-005-0356-0.  Google Scholar

[3]

M. E. Alexander, S. M. Moghadas, G. Röst and J. Wu, A delay differential model for pandemic influenza with antiviral treatment,, Bull. Math. Biol., 70 (2008), 382.  doi: 10.1007/s11538-007-9257-2.  Google Scholar

[4]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans, Dynamics and Control,", Oxford University, (1991).   Google Scholar

[5]

J. Arino, C. McCluskey and P. van den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation,, SIAM J. Appl. Math., 64 (2003), 260.  doi: 10.1137/S0036139902413829.  Google Scholar

[6]

J. Arino, R. Jordan and P. van den Driessche, Quarantine in a multi-species epidemic model with spatial dynamics,, Math. Biosci., 206 (2007), 46.  doi: 10.1016/j.mbs.2005.09.002.  Google Scholar

[7]

J.-P. Aubin and A. Cellina, "Differential Inclusions. Set-Valued Maps and Viability Theory,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 264 (1984).   Google Scholar

[8]

A. Baciotti and F. Ceragioli, Stability and stabilization of discontinuous systems and nonsmooth Lyapunov function,, ESAIM Control Optim. Calc. Var., 4 (1999), 361.  doi: 10.1051/cocv:1999113.  Google Scholar

[9]

F. Brauer, Backward bifurcations in simple vaccination models,, J. Math. Anal. Appl., 298 (2004), 418.  doi: 10.1016/j.jmaa.2004.05.045.  Google Scholar

[10]

F. Brauer, Epidemic models with heterogeneous mixing and treatment,, Bull. Math. Biol., 70 (2008), 1869.  doi: 10.1007/s11538-008-9326-1.  Google Scholar

[11]

F. Brauer, P. van den Driessche and J. Wu, eds., "Mathematical Epidemiology,", Lecture Notes in Mathematics, 1945 (2008).   Google Scholar

[12]

C. Castillo-Chavez and Z. Feng, To treat or not to treat: The case of tuberculosis,, J. Math. Biol., 35 (1997), 629.  doi: 10.1007/s002850050069.  Google Scholar

[13]

F. Ceragioli, "Discontinuous Ordinary Differential Equations and Stabilization,", Universita di Firenze, (2000).   Google Scholar

[14]

F. H. Clarke, "Optimization and Non-Smooth Analysis,", Wiley, (1983).   Google Scholar

[15]

Z. Feng, Final and peak epidemic sizes for SEIR models with quarantine and isolation,, Math. Biosci. Eng., 4 (2007), 675.  doi: 10.3934/mbe.2007.4.675.  Google Scholar

[16]

Z. Feng and H. R. Thieme, Recurrent outbreaks of childhood diseases revisited: The impact of isolation,, Math. Biosci., 128 (1995), 93.  doi: 10.1016/0025-5564(94)00069-C.  Google Scholar

[17]

A. F. Filippov, "Differential Equations with Discontinuous Righthand Sides,", Translated from the Russian, 18 (1988).   Google Scholar

[18]

M. Forti, M. Grazzini, P. Nistri and L. Pancioni, Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations,, Phys. D, 214 (2006), 88.  doi: 10.1016/j.physd.2005.12.006.  Google Scholar

[19]

J. M. Hyman and J. Li, Modeling the effectiveness of isolation strategies in preventing STD epidemics,, SIAM J. Appl. Math., 58 (1998), 912.  doi: 10.1137/S003613999630561X.  Google Scholar

[20]

M. Nuño, Z. Feng, M. Martcheva and C. Castillo-Chavez, Dynamics of two-strain influenza with isolation and partial cross-immunity,, SIAM J. Appl. Math., 65 (2005), 964.  doi: 10.1137/S003613990343882X.  Google Scholar

[21]

W. Wang, Backward bifurcation of an epidemic model with treatment,, Math. Biosci., 201 (2006), 58.  doi: 10.1016/j.mbs.2005.12.022.  Google Scholar

[22]

L. Wu and Z. Feng, Homoclinic bifurcation in an SIQR model for childhood diseases,, J. Differ. Equat., 168 (2000), 150.   Google Scholar

[23]

X. Zhang and X. Liu, Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment,, Nonl. Anal. RWA, 10 (2009), 565.  doi: 10.1016/j.nonrwa.2007.10.011.  Google Scholar

[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[3]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[4]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[5]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[6]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[7]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[8]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[9]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[10]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[11]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[12]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[13]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[14]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[15]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[16]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[17]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[18]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[19]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[20]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]