Citation: |
[1] |
O. Arino, A survey of structured cell population dynamics, Acta Biotheor., 43 (1995), 3-25.doi: 10.1007/BF00709430. |
[2] |
O. Arino and M. Kimmel, Comparison of approaches to modeling of cell population dynamics, SIAM J. Appl. Math., 53 (1993), 1480-1504.doi: 10.1137/0153069. |
[3] |
O. Arino and E. Sanchez, A survey of cell population dynamics, J. Theor. Med., 1 (1997), 35-51.doi: 10.1080/10273669708833005. |
[4] |
D. Barbolosi, A. Benabdallah, F. Hubert and F. Verga, Mathematical and numerical analysis for a model of growing metastatic tumors, Math. Biosci., 218 (2009), 1-14.doi: 10.1016/j.mbs.2008.11.008. |
[5] |
B. Basse, B. C. Baguley, E. S. Marshall, G. C. Wake and D. J. N. Wall, Modelling the flow [corrected] cytometric data obtained from unperturbed human tumour cell lines: parameter fitting and comparison, Bull Math. Biol., 67 (2005), 815-830.doi: 10.1016/j.bulm.2004.10.003. |
[6] |
B. Basse and P. Ubezio, A generalised age- and phase-structured model of human tumour cell populations both unperturbed and exposed to a range of cancer therapies, Bull Math. Biol., 69 (2007) 1673-1690.doi: 10.1007/s11538-006-9185-6. |
[7] |
S. Benzekry, N. André, A. Benabdallah, J. Ciccolini, C. Faivre, F. Hubert and D. Barbolosi, Modeling the impact of anticancer agents on metastatic spreading, Mathematical Modelling of Natural Phenomena, 7 (2012) 306-336.doi: 10.1051/mmnp/20127114. |
[8] |
F. Billy, J. Clairambault, O. Fercoq, S. Gaubert, T. Lepoutre, T. Ouillon and S. Saito, Synchronisation and control of proliferation in cycling cell population models with age structure, Math. Comp. Simul., 2012. in press, available on line Apr. 2012. |
[9] |
J. Clairambault, Optimizing cancer pharmacotherapeutics using mathematical modeling and a systems biology approach, Personalized Medicine, 8 (2011), 271-286.doi: 10.2217/pme.11.20. |
[10] |
J. Clairambault, S. Gaubert and T. Lepoutre, Comparison of Perron and Floquet eigenvalues in age structured cell division models, Mathematical Modelling of Natural Phenomena, 4 (2009), 183-209.doi: 10.1051/mmnp/20094308. |
[11] |
J. Clairambault, S. Gaubert and T. Lepoutre, Circadian rhythm and cell population growth, Mathematical and Computer Modelling, 53 (2011), 1558-1567.doi: 10.1016/j.mcm.2010.05.034. |
[12] |
J. Clairambault, B. Laroche, S. Mischler and B. Perthame, A mathematical model of the cell cycle and its control, Technical report, Number 4892, INRIA, Domaine de Voluceau, BP 105, 78153 Rocquencourt, France, 2003. |
[13] |
A. A. Cohen, T. Kalisky, A. Mayo, N. Geva-Zatorsky, T. Danon, I. Issaeva, R. Kopito, N. Perzov, R. Milo, A. Sigal and U. Alon, Protein dynamics in individual human cells: Experiment and theory, PLoS one, 4 (2009), 1-12.doi: 10.1371/journal.pone.0004901. |
[14] |
M. Cross and T. M. Dexter, Growth factors in development, transformation, and tumorigenesis, Cell, 64 Jan. (1991), 271-280.doi: 10.1016/0092-8674(91)90638-F. |
[15] |
S. Davis and D. K. Mirick, Circadian disruption, shift work and the risk of cancer: A summary of the evidence and studies in seattle, Cancer Causes Control, 17 (2006), 539-545.doi: 10.1007/s10552-005-9010-9. |
[16] |
S. S. Fatimah, G. C. Tan, K. H. Chua, A. E. Tan and A. R. Hayati, Effects of epidermal growth factor on the proliferation and cell cycle regulation of cultured human amnion epithelial cells, J. Biosci. Bioeng., 114 (2012), 220-227.doi: 10.1016/j.jbiosc.2012.03.021. |
[17] |
E. Filipski, X. M. Li and F. Lévi, Disruption of circadian coordination and malignant growth, Cancer Causes Control, 17 (2006), 509-514.doi: 10.1007/s10552-005-9007-4. |
[18] |
E. Filipski, P. Subramanian, J. Carrière, C. Guettier, H. Barbason and F. Lévi, Circadian disruption accelerates liver carcinogenesis in mice, Mutat. Res., 680 (2009), 95-105.doi: 10.1016/j.mrgentox.2009.10.002. |
[19] |
D. A. Foster, P. Yellen, L. Xu and M. Saqcena, Regulation of g1 cell cycle progression: Distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s), Genes Cancer, 1 Nov. (2010), 1124-1131.doi: 10.1177/1947601910392989. |
[20] |
M. Gyllenberg and G. F. Webb, A nonlinear structured population model of tumor growth with quiescence, J. Math. Biol., 28 (1990), 671-694.doi: 10.1007/BF00160231. |
[21] |
J. Hansen, Risk of breast cancer after night- and shift work: Current evidence and ongoing studies in denmark, Cancer Causes Control, 17 (2006), 531-537.doi: 10.1007/s10552-005-9006-5. |
[22] |
N. Hansen, The CMA evolution strategy: A comparing review. towards a new evolutionary computation, in "Advances on Estimation of Distribution Algorithms" (editors, J. Lozano, P. Larranaga, I. Inza, and E. Bengoetxea), 75-102. Springer, New York, 2006. |
[23] |
P. Hinow, S. E. Wang, C. L. Arteaga and G. F. Webb, A mathematical model separates quantitatively the cytostatic and cytotoxic effects of a HER2 tyrosine kinase inhibitor, Theor. Biol. Med. Model, 4 (2007), pp.14.doi: 10.1186/1742-4682-4-14. |
[24] |
K. Iwata, K. Kawasaki and N. Shigesada, A dynamical model for the growth and size distribution of multiple metastatic tumors, J. Theor. Biol., 203 (2000), 177-186.doi: 10.1006/jtbi.2000.1075. |
[25] |
S. M. Jones and A. Kazlauskas, Connecting signaling and cell cycle progression in growth factor-stimulated cells, Oncogene, 19 Nov. (2000), 5558-5567.doi: 10.1038/sj.onc.1203858. |
[26] |
Y. Kheifetz, Y. Kogan and Z. Agur, Long-range predictability in models of cell populations subjected to phase-specific drugs: Growth-rate approximation using properties of positive compact operators, Math. Models Methods Appl. Sci., 16 (2006), 1155-1172.doi: 10.1142/S0218202506001492. |
[27] |
F. Lévi, A. Okyar, S. Dulong, P. F. Innominato and J. Clairambault, Circadian timing in cancer treatments, Annu. Rev. Pharmacol. Toxicol., 50 (2010), 377-421.doi: 10.1146/annurev.pharmtox.48.113006.094626. |
[28] |
F. Lévi and U. Schibler, Circadian rhythms: Mechanisms and therapeutic implications, Annu. Rev. Pharmacol. Toxicol., 47 (2007), 593-628.doi: 10.1146/annurev.pharmtox.47.120505.105208. |
[29] |
J. Massagué, How cells read TGF-$\beta$ signals, Nat. Rev. Mol. Cell Biol., 1 Dec. (2000), 169-178.doi: 10.1038/35043051. |
[30] |
J. Massagué, S. W. Blain and R. S. Lo, TGF$\beta$ signaling in growth control, cancer, and heritable disorders, Cell, 103 Oct. (2000), 295-309.doi: 10.1016/S0092-8674(00)00121-5. |
[31] |
A. L. Mazlyzam, B. S. Aminuddin, L. Saim and B. H. I. Ruszymah, Human serum is an advantageous supplement for human dermal fibroblast expansion: Clinical implications for tissue engineering of skin, Arch. Med. Res., 39 (2008), 743-752.doi: 10.1016/j.arcmed.2008.09.001. |
[32] |
H. H. McAdams and A. Arkin, Stochastic mechanisms in gene expression, Proc. Natl. Acad. Sci. USA, 31 (1997), 814-819.doi: 10.1073/pnas.94.3.814. |
[33] |
A. McKendrick, Applications of mathematics to medical problems, Proc. Edinburgh Math. Soc., 54 (1926), 98-130. |
[34] |
J. Mendelsohn and J. Baselga, Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer, J. Clin. Oncol., 14 (2003), 2787-2799.doi: 10.1200/JCO.2003.01.504. |
[35] |
J. Metz and O. Diekmann, "The Dynamics of Physiologically Structured Populations," volume 68 of Lecture Notes in Biomathematics. Springer, New York, 1986. |
[36] |
A. B. Pardee, A restriction point for control of normal animal cell proliferation, Proc. Natl. Acad. Sci. USA, 71 (1974), 1286-1290.doi: 10.1073/pnas.71.4.1286. |
[37] |
B. Perthame, "Transport Equations in Biology," Frontiers in Mathematics series. Birkhäuser, Boston, 2007. |
[38] |
S. I. Reed, E. Bailly, V. Dulic, L. Hengst, D. Resnitzky and J. Slingerland, G1 control in mammalian cells, J. Cell Sci. Suppl., 18 (1994), 69-73. |
[39] |
D. Resnitzky, M. Gossen, H. Bujard and S. I. Reed, Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system, Mol. Cell Biol., 14 (1994), 1669-1679. |
[40] |
B. Ribba, O. Saut, T. Colin, D. Bresch, E. Grenier and J. P. Boissel, A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents, J. Theor. Biol., 243 (2006), 532-541.doi: 10.1016/j.jtbi.2006.07.013. |
[41] |
A. Sakaue-Sawano, H. Kurokawa, T. Morimura, A. Hanyu, H. Hama, H. Osawa, S. Kashiwagi, K. Fukami, T. Miyata, H. Miyoshi, T. Imamura, M. Ogawa, H. Masai and A. Miyawaki, Visualizing spatiotemporal dynamics of multicellular cell-cycle progression, Cell, 132 (2008), 487-498.doi: 10.1016/j.cell.2007.12.033. |
[42] |
A. Sakaue-Sawano, K. Ohtawa, H. Hama, M. Kawano, M. Ogawa and A. Miyawaki, Tracing the silhouette of individual cells in S/G2/M phases with fluorescence, Chem. Biol., 15 (2008), 1243-1248.doi: 10.1016/j.chembiol.2008.10.015. |
[43] |
V. Shahreazaei and P. G. Swain, Analytical distributions for stochastic gene expression, Proc. Natl. Acad. Sci. USA, 105 (2008), 17256-17261.doi: 10.1073/pnas.0803850105. |
[44] |
E. Sherer, E. Tocce, R. E. Hannemann, A. E. Rundell and D. Ramkrishna, Identification of age-structured models: cell cycle phase transitions, Biotechnol. Bioeng., 99 (2008), 960-974.doi: 10.1002/bit.21633. |
[45] |
R. Taub, Liver regeneration: from myth to mechanism, Nat. Rev. Mol. Cell Biol., 5 Oct. (2004), 836-847.doi: 10.1038/nrm1489. |
[46] |
G. Webb, Resonance phenomena in cell population chemotherapy models, Rocky Mountain J. Math., 20 (1990), 1195-1216.doi: 10.1216/rmjm/1181073070. |
[47] |
A. Zetterberg, O. Larsson and K. G. Wiman, What is the restriction point?, Curr. Opin. Cell Biol., 7 Dec. (1995), 835-842.doi: 10.1016/0955-0674(95)80067-0. |