2013, 10(4): 1095-1133. doi: 10.3934/mbe.2013.10.1095

Regulation of Th1/Th2 cells in asthma development: A mathematical model

1. 

Department of Mathematics, Konkuk University, Seoul, South Korea

2. 

Department of Mathematics, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea

3. 

Department of Life Science, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea, South Korea, South Korea

4. 

Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom

Received  November 2012 Revised  March 2013 Published  June 2013

Airway exposure levels of lipopolysaccharide (LPS) determine type I versus type II helper T cell induced experimental asthma. While high LPS levels induce Th1-dominant responses, low LPS levels derive Th2 cell induced asthma. The present paper develops a mathematical model of asthma development which focuses on the relative balance of Th1 and Th2 cell induced asthma. In the present work we represent the complex network of interactions between cells and molecules by a mathematical model. The model describes the behaviors of cells (Th0, Th1, Th2 and macrophages) and regulatory molecules (IFN-$\gamma$, IL-4, IL-12, TNF-α) in response to high, intermediate, and low levels of LPS. The simulations show how variations in the levels of injected LPS affect the development of Th1 or Th2 cell responses through differential cytokine induction. The model also predicts the coexistence of these two types of response under certain biochemical and biomechanical conditions in the microenvironment.
Citation: Yangjin Kim, Seongwon Lee, You-Sun Kim, Sean Lawler, Yong Song Gho, Yoon-Keun Kim, Hyung Ju Hwang. Regulation of Th1/Th2 cells in asthma development: A mathematical model. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1095-1133. doi: 10.3934/mbe.2013.10.1095
References:
[1]

R. Abe, S. Donnelly, T. Peng, R. Bucala and C. Metz, Peripheral blood fibrocytes: differentiation pathway and migration to wound sites,, J. Immunol., 166 (2001), 7556.   Google Scholar

[2]

O. Akbari, G. Freeman, E. Meyer, E. Greenfield, T. Chang, A. Sharpe, G. Berry, R. DeKruyff and D. Umetsu, Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity,, Nat. Med., 8 (2002), 1024.  doi: 10.1038/nm745.  Google Scholar

[3]

C. A. Akdis, T. Blesken, M. Akdis, B. Wüthrich and K. Blaser, Role of interleukin 10 in specific immunotherapy,, J. Clin. Invest., 102 (1998), 98.  doi: 10.1172/JCI2250.  Google Scholar

[4]

M. Akdis and C. A. Akdis, Mechanisms of allergen-specific immunotherapy,, J. Allergy Clin. Immunol., 119 (2007), 780.   Google Scholar

[5]

T. Alarcón, H. Byrne and P. Maini, Towards whole-organ modelling of tumour growth,, Prog. Biophys. Mol. Biol., 85 (2004), 451.   Google Scholar

[6]

J. F. Alcorn, C. R. Crowe and J. K. Kolls, $T_H$17 cells in asthma and COPD,, Annu. Rev. Physiol., 72 (2010), 495.   Google Scholar

[7]

D. Amsen, A. Antov, D. Jankovic, A. Sher, F. Radtke, A. Souabni, M. Busslinger, B. McCright, T. Gridley and R. Flavell, Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch,, Immunity, 27 (2007), 89.  doi: 10.1016/j.immuni.2007.05.021.  Google Scholar

[8]

F. Annunziato, L. Cosmi and S. Romagnani, Human and murine Th17,, Curr. Opin. HIV AIDS, 5 (2010), 114.  doi: 10.1097/COH.0b013e32833647c2.  Google Scholar

[9]

P. Barnes, Th2 cytokines and asthma: An introduction,, Respir. Res., 2 (2001), 64.   Google Scholar

[10]

R. L. Baror and L. Segel, On the role of a possible dialogue between cytokine and TCR-presentation mechanisms in the regulation of autoimmune disease,, J. Theor. Biol., 190 (1998), 161.   Google Scholar

[11]

U. Behn, H. Dambeck and G. Metzner, Modeling Th1-Th2 regulation, allergy, and hyposensitization,, in, (2000), 227.  doi: 10.1142/9789812813053_0011.  Google Scholar

[12]

M. Berry, C. Brightling, I. Pavord and A. Wardlaw, TNF-alpha in asthma,, Curr. Opin. Pharmacol., 7 (2007), 279.  doi: 10.1016/j.coph.2007.03.001.  Google Scholar

[13]

B. Bochner, B. Undem and L. Lichtenstein, Immunological aspects of allergic asthma,, Annu. Rev. Immunol., 12 (1994), 295.   Google Scholar

[14]

A. Bolinger and M. Taeubel, Recombinant interferon gamma for treatment of chronic granulomatous disease and other disorders,, Clin. Pharm., 11 (1992), 834.   Google Scholar

[15]

T. Bongartz, A. Sutton, M. Sweeting, I. Buchan, E. Matteson and V. Montori, Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: Systematic review and meta-analysis of rare harmful effects in randomized controlled trials,, JAMA, 295 (2006), 2275.  doi: 10.1001/jama.295.19.2275.  Google Scholar

[16]

L. Borish, H. Nelson, M. Lanz, L. Claussen, J. Whitmore, J. Agosti and L. Garrison, Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial,, Am. J. Respir. Crit. Care Med., 160 (1999), 1816.  doi: 10.1164/ajrccm.160.6.9808146.  Google Scholar

[17]

D. Bray, "Cell Movements: From Molecules to Motility,", Garland Pub., (2000).   Google Scholar

[18]

T. Brocker, Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells,, J. Exp. Med., 186 (1997), 1223.  doi: 10.1084/jem.186.8.1223.  Google Scholar

[19]

R. Callard and A. Yates, Immunology and mathematics: Crossing the divide,, Immunology, 115 (2005), 21.  doi: 10.1111/j.1365-2567.2005.02142.x.  Google Scholar

[20]

J. Carneiro, J. Stewart, A. Coutinho and G. Coutinho, The ontogeny of class-regulation of CD4+T lymphocte populations,, Int. Immunol., 7 (1995), 1265.  doi: 10.1093/intimm/7.8.1265.  Google Scholar

[21]

S. Cho, L. Stanciu, S. Holgate and S. Johnston, Increased interleukin-4, interleukin-5, and interferon-gamma in airway CD4+ and CD8+ T cells in atopic asthma,, Am. J. Respir. Crit. Care Med., 171 (2005), 224.  doi: 10.1164/rccm.200310-1416OC.  Google Scholar

[22]

D. Coombs and B. Goldstein, Effects of the geometry of the immunological synapse on the delivery of effector molecules,, Biophys. J., 87 (2004), 2215.  doi: 10.1529/biophysj.104.045674.  Google Scholar

[23]

L. Cosmi, F. Liotta, E. Maggi, S. Romagnani and F. Annunziato, Th17 cells: New players in asthma pathogenesis,, Allergy, 66 (2011), 989.  doi: 10.1111/j.1398-9995.2011.02576.x.  Google Scholar

[24]

L. Cosmi, L. Maggi, V. Santarlasci, M. Capone, E. Cardilicchia and F. F. et al., Identification of a novel subset of human circulating memory CD4(+) T cells that produce both IL-17A and IL-4,, J. Allergy Clin. Immunol., 125 (2010), 222.  doi: 10.1016/j.jaci.2009.10.012.  Google Scholar

[25]

E. Cutz, H. Levison and D. Cooper, Ultrastructure of airways in children with asthma,, Histopathology, 2 (1978), 407.  doi: 10.1111/j.1365-2559.1978.tb01735.x.  Google Scholar

[26]

E. Deenick, A. Gett and P. Hodgkin, Stochastic model of T cell proliferation: A calculus revealing IL-2 regulation of precursor frequencies, cell cycle time, and survival,, J. Immunol., 170 (2003), 4963.   Google Scholar

[27]

T. Demuth, N. Hopf, O. Kempski, D. Sauner, M. Herr, A. Giese and A. Perneczky, Migratory activity of human glioma cell lines in vitro assessed by continuous single cell observation,, Clin. Exp. Metastasis, 18 (2000), 589.   Google Scholar

[28]

T. V. Dyke, A. Reilly and R. Genco, Regression line analysis of neutrophil chemotaxis,, Immunopharmacology, 4 (1982), 23.   Google Scholar

[29]

S. Eisenbarth, D. Piggott, J. Huleatt, I. Visintin, C. Herrick and K. Bottomly, Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen,, J. Exp. Med., 196 (2002), 1645.  doi: 10.1084/jem.20021340.  Google Scholar

[30]

M. Fishman and A. Perelson, Modeling T cell-antigen presenting cell interactions,, J. Theor. Biol., 160 (1993), 311.  doi: 10.1006/jtbi.1993.1021.  Google Scholar

[31]

M. Fishman and A. Perelson, Th1/2 cross-regulation,, J. Theor. Biol., 170 (1994), 25.   Google Scholar

[32]

M. Fishman and A. Perelson, Th1/Th2 differentiation and cross regulation,, Bull. Math. Biol., 61 (1999), 403.  doi: 10.1006/bulm.1998.0074.  Google Scholar

[33]

K. Francis and B. Palsson, Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion,, Proc. Natl. Acad. Sci. USA, 94 (1997), 12258.  doi: 10.1073/pnas.94.23.12258.  Google Scholar

[34]

J. Gao, Q. Xue, C. Papasian and D. Morrison, Bacterial DNA and lipopolysaccharide induce synergistic production of TNF-alpha through a post-transcriptional mechanism,, J. Immunol., 166 (2001), 6855.   Google Scholar

[35]

J. Gereda, D. Leung, A. Thatayatikom, J. Streib, M. Price, M. Klinnert and A. Liu, Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma,, Lancet., 355 (2000), 1680.  doi: 10.1016/S0140-6736(00)02239-X.  Google Scholar

[36]

A. Gett and P. Hodgkin, A cellular calculus for signal integration by T cells,, Nat. Immunol., 1 (2000), 239.   Google Scholar

[37]

J. Glasgow, B. Farrell, E. Fisher, D. Lauffenburger and R. Daniele, The motile response of alveolar macrophages. an experimental study using single-cell and cell population approaches,, Am. Rev. Respir. Dis., 139 (1989), 320.  doi: 10.1164/ajrccm/139.2.320.  Google Scholar

[38]

F. Groß, G. Metznerb and U. Behn, Mathematical modelling of allergy and specific immunotherapy: Th1-Th2-Treg interactions,, J. Theor. Biol., 269 (2011), 70.  doi: 10.1016/j.jtbi.2010.10.013.  Google Scholar

[39]

G. Grunig, M. Warnock, A. Wakil, R. Venkayya, F. Brombacher, D. Rennick, D. Sheppard, M. Mohrs, D. Donaldson, R. Locksley and D. Corry, Requirement for IL-13 independently of IL-4 in experimental asthma,, Science, 282 (1998), 2261.   Google Scholar

[40]

H. Gudmundsdottir, A. Wells and L. Turka, Dynamics and requirements of T cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity,, J. Immunol., 162 (1999), 5212.   Google Scholar

[41]

Q. Hamid and M. Tulic, Immunobiology of asthma,, Annu. Rev. Physiol., 71 (2009), 489.  doi: 10.1146/annurev.physiol.010908.163200.  Google Scholar

[42]

M. Harber, A. Sundstedt and D. Wraith, The role of cytokines in immunological tolerance: potential for therapy,, Expert. Rev. Mol. Med., 2 (2000), 1.  doi: 10.1017/S1462399400002143.  Google Scholar

[43]

B. Hegedus, J. Zach, A. Czirok, J. Lovey and T. Vicsek, Irradiation and taxol treatment result in non-monotonous, dose-dependent changes in the motility of glioblastoma cells,, J. Neurooncol., 67 (2004), 147.  doi: 10.1023/B:NEON.0000021826.73020.f3.  Google Scholar

[44]

S. Herrmann, G. Winter, S. Mohl, F. Siepmann and J. Siepmann, Mechanisms controlling protein release from lipidic implants: Effects of peg addition,, Journal of Controlled Release, 118 (2007), 161.  doi: 10.1016/j.jconrel.2006.11.001.  Google Scholar

[45]

P. Howarth, K. Babu, H. Arshad, L. Lau, M. Buckley, W. McConnell, P. Beckett, M. Ali, A. Chauhan, S. Wilson, A. Reynolds, D. Davies and S. Holgate, Tumour necrosis factor (TNFalpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma,, Thorax, 60 (2005), 1012.   Google Scholar

[46]

A. Jansson, M. Fagerlind, D. Karlsson, P. Nilsson and M. Cooley, In silico simulations suggest that Th-cell development is regulated by both selective and instructive mechanisms,, Immunol. Cell Biol., 84 (2006), 218.  doi: 10.1111/j.1440-1711.2006.01425.x.  Google Scholar

[47]

A. Jansson, M. Harlen, S. Karlsson, P. Nilsson and M. Cooley, 3D computation modelling of the influence of cytokine secretion on Th-cell development suggests that negative selection (inhibition of Th1 cells) is more effective than positive selection by IL-4 for Th2 cell dominance modelling Th cell selection,, Immunology and Cell Biology, 85 (2007), 189.  doi: 10.1038/sj.icb.7100023.  Google Scholar

[48]

S. Jeon, S. Oh, H. Park, Y. Kim, E. Shim, H. Lee, M. Oh, B. Bang, E. Chun, S. Kim, Y. Gho, Z. Zhu, Y. Kim and Y. Kim, TH2 and TH1 lung inflammation induced by airway allergen sensitization with low and high doses of double-stranded RNA,, J. Allergy Clin. Immunol., 120 (2007), 803.  doi: 10.1016/j.jaci.2007.05.030.  Google Scholar

[49]

T. Katakai, K. Mori, T. Masuda and A. Shimizu, Differential localization of Th1 and Th2 cells in autoimmune gastritis,, Int. Immunol., 10 (1998), 1325.  doi: 10.1093/intimm/10.9.1325.  Google Scholar

[50]

Y. Kim and A. Friedman, Interaction of tumor with its microenvironment : A mathematical model,, Bull. Math. Biol., 72 (2010), 1029.  doi: 10.1007/s11538-009-9481-z.  Google Scholar

[51]

Y. Kim, S. Lawler, M. Nowicki, E. Chiocca and A. Friedman, A mathematical model of brain tumor: Pattern formation of glioma cells outside the tumor spheroid core,, J. Theo. Biol., 260 (2009), 359.  doi: 10.1016/j.jtbi.2009.06.025.  Google Scholar

[52]

Y. Kim and S. Lim, The role of the microenvironment in tumor invasion,, 2009 Proceedings of the Fourth SIAM Conference on Mathematics for Industry (MI09), (2010), 84.  doi: 10.1016/j.pbiomolbio.2011.06.006.  Google Scholar

[53]

Y. Kim, S. Oh, S. Jeon, H. Park, S. Lee, E. Chun, B. Bang, H. Lee, M. Oh, Y. Kim, J. Kim, Y. Gho, S. Cho, K. Min, Y. Kim and Z. Zhu, Airway exposure levels of lipopolysaccharide determine type 1 versus type 2 experimental asthma,, J. Immunol., 178 (2007), 5375.   Google Scholar

[54]

Y. Kim, M. Stolarska and H. Othmer, The role of the microenvironment in tumor growth and invasion,, Progress in Biophysics and Molecular Biology, 106 (2011), 353.  doi: 10.1016/j.pbiomolbio.2011.06.006.  Google Scholar

[55]

Y. Kim, J. C. S.W. Hong, T. Shin, H. Moon and E. C. et al., Vascular endothelial growth factor is a key mediator in the development of T cell priming and its polarization to type 1 and type 17 T helper cells in the airways,, J. Immunol., 183 (2009), 5113.  doi: 10.4049/jimmunol.0901566.  Google Scholar

[56]

Y. Kim, J. Wallace, F. Li, M. Ostrowski and A. Friedman, Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumor: a mathematical model and experiments,, J. Math. Biol., 61 (2010), 401.  doi: 10.1007/s00285-009-0307-2.  Google Scholar

[57]

J. Kirberg, A. Berns and H. Boehmer, Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules,, J. Exp. Med., 186 (1997), 1269.  doi: 10.1084/jem.186.8.1269.  Google Scholar

[58]

D. Kirschner and J. Panetta, Modeling immunotherapy of the tumor-immune interaction,, J. Math. Biol., 37 (1998), 235.  doi: 10.1007/s002850050127.  Google Scholar

[59]

L. Kreuz and A. Levy, Physical properties of chick interferon,, J. Bacteriology, 89 (1965), 462.   Google Scholar

[60]

H. Kuipers, D. Hijdra, V. Vries, H. Hammad, J. Prins, A. Coyle, H. Hoogsteden and B. Lambrecht, Lipopolysaccharide-induced suppression of airway Th2 responses does not require IL-12 production by dendritic cells,, J. Immunol., 171 (2003), 3645.   Google Scholar

[61]

R. Kumar, D. Webb, C. Herbert and P. Foster, Interferon-gamma as a possible target in chronic asthma,, Inflamm. Allergy Drug Targets, 5 (2006), 253.   Google Scholar

[62]

C. Langrish, Y. Chen., W. M. Blumenschein, J. Mattson, B. Basham, J. Sedgwick, T. McClanahan, R. Kastelein and D. Cua, Il-23 drives a pathogenic T cell population that induces autoimmune inflammation,, J. Exp. Med., 201 (2005), 233.  doi: 10.1084/jem.20041257.  Google Scholar

[63]

Y. Lee, H. Turner, C. Maynard, J. Oliver, D. Chen, C. Elson and C. Weaver, Late developmental plasticity in the T helper 17 lineage,, Immunity, 30 (2009), 92.  doi: 10.1016/j.immuni.2008.11.005.  Google Scholar

[64]

C. M. Lloyd and C. M. Hawrylowicz, Regulatory T cells in asthma,, Immunity, 31 (2009), 438.  doi: 10.1016/j.immuni.2009.08.007.  Google Scholar

[65]

H. Lortat-Jacob, F. Baltzer and J. Grimaud, Heparin decreases the blood clearance of interferon-gamma and increases its activity by limiting the processing of its carboxyl-terminal sequence,, The Journal of Biological Chemistry, 271 (1996), 16139.   Google Scholar

[66]

G. Lugo-Villarino, R. Maldonado-Lopez, R. Possemato, C. Penaranda and L. Glimcher, T-bet is required for optimal production of IFN-gamma and antigen-specific t cell activation by dendritic cells,, Proc. Natl. Acad. Sci. USA, 100 (2003), 7749.   Google Scholar

[67]

A. Magnan, L. Mély, C. Camilla, M. Badier, F. Montero-Julian, C. Guillot, B. Casano, S. Prato, V. Fert, P. Bongrand and D. Vervloet, Assessment of the Th1/Th2 paradigm in whole blood in atopy and asthma. Increased IFN-gamma-producing CD8(+) T cells in asthma,, Am. J. Respir. Crit. Care Med., 161 (2000), 1790.  doi: 10.1164/ajrccm.161.6.9906130.  Google Scholar

[68]

S. Marino, I. Hogue, C. Ray and D. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology,, J. Theor. Biol., 254 (2008), 178.  doi: 10.1016/j.jtbi.2008.04.011.  Google Scholar

[69]

M. Masoli, D. Fabian, S. Holt and R. Beasley, The global burden of asthma: Executive summary of the GINA dissemination committee report,, Allergy, 59 (2004), 469.  doi: 10.1111/j.1398-9995.2004.00526.x.  Google Scholar

[70]

G. Mazzarella, A. Bianco, E. Catena, R. De Palma and G. Abbate, Th1/Th2 lymphocyte polarization in asthma,, Allergy, 55 (2000), 6.  doi: 10.1034/j.1398-9995.2000.00511.x.  Google Scholar

[71]

O. Michel, R. Ginanni, J. Duchateau, F. Vertongen, B. Bon and R. Sergysels, Domestic endotoxin exposure and clinical severity of asthma,, Clin. Exp. Allergy, 21 (1991), 441.  doi: 10.1111/j.1365-2222.1991.tb01684.x.  Google Scholar

[72]

M. Miller, S. Wei, I. Parker and M. Cahalan, Two-photon imaging of lymphocyte motility and antigen response in intact lymph node,, Science, 296 (2002), 1869.  doi: 10.1126/science.1070051.  Google Scholar

[73]

H.-G. Moon, Y.-M. Tae, Y.-S. Kim, S. Gyu Jeon, S.-Y. Oh, Y. Song Gho, Z. Zhu and Y.-K. Kim, Conversion of Th17-type into Th2-type inflammation by acetyl salicylic acid via the adenosine and uric acid pathway in the lung,, Allergy, 65 (2010), 1093.  doi: 10.1111/j.1398-9995.2010.02352.x.  Google Scholar

[74]

B. Morel, J. Kalagnanam and P. Morel, Mathematical modelling of Th1-Th2 dynamics,, in, (1992), 171.   Google Scholar

[75]

J. Morjaria, K. Babu, S. Holgate and R. Polosa, Tumour necrosis factor-alpha as a therapeutic target in asthma,, Drug Discovery Today: Therapeutic Strategies, 3 (2006), 309.  doi: 10.1016/j.ddstr.2006.09.007.  Google Scholar

[76]

J. Morjaria, K. Babu, R. Polosa and S. Holgate, Tumour necrosis factor-alpha in severe corticosteroid-refractory asthma,, Exp. Rev. Resp. Med., 1 (2007), 51.   Google Scholar

[77]

T. Mosmann, H. Cherwinski, M. Bond, M. Giedlin and R. Coffman, Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins,, J. Immunol., 136 (1986), 2348.   Google Scholar

[78]

T. Mosmann and R. Coffman, TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties,, Annu. Rev. Immunol., 7 (1989), 145.   Google Scholar

[79]

E. Muraille, O. Leo and M. Kaufman, The role of antigen presentation in the regulation of class-specific (Th1/Th2) immune responses,, J. Biol. Syst., 3 (1995), 397.  doi: 10.1142/S021833909500037X.  Google Scholar

[80]

A. Murphy, "Asthma in Focus,", In Focus Series, (2007).   Google Scholar

[81]

K. Murphy, P. Travers and M. Walport, "Janeway's Immunobiology,", $7^{th}$ edition, (2007).   Google Scholar

[82]

L. Narhi, J. Philo, T. Li, M. Zhang, B. Samal and T. Arakawa, Induction of alpha-helix in the beta-sheet protein tumor necrosis factor-alpha: Acid-induced denaturation,, Biochemistry, 35 (1996), 11454.  doi: 10.1021/bi952767n.  Google Scholar

[83]

D. Nesic and S. Vukmanovic, MHC class I is required for peripheral accumulation of CD8+ thymic emigrants,, J. Immunol, 160 (1998), 3705.   Google Scholar

[84]

S. Olenchock, J. May, D. Pratt and P. Morey, Occupational exposures to airborne endotoxins in agriculture,, Prog. Clin. Biol. Res., 231 (1987), 475.   Google Scholar

[85]

J. Oliver, L. Bland, C. Oettinger, M. Arduino, S. McAllister, S. Aguero and M. Favero, Cytokine kinetics in an in vitro whole blood model following an endotoxin challenge,, Lymphokine Cytokine Res., 12 (1993), 115.   Google Scholar

[86]

G. J. Pettet, H. M. Byrne, D. L. S. Mcelwain and J. Norbury, A model of wound-healing angiogenesis in soft tissue,, Math. Bios., 136 (1996), 35.  doi: 10.1016/0025-5564(96)00044-2.  Google Scholar

[87]

A. Ray, A. Khare, N. Krishnamoorthy, Z. Qi and P. Ray, Regulatory T cells in many flavors control asthma,, Mucosal. Immunol., 3 (2010), 216.  doi: 10.1038/mi.2010.4.  Google Scholar

[88]

J. Richter, G. Metzner and U. Behn, Mathematical modelling of venom immunotherapy,, Journal of Theoretical Medicine, 4 (2002), 119.  doi: 10.1080/10273660290022172.  Google Scholar

[89]

D. S. Robinson, Regulatory T cells and asthma,, Clin. Exp. Allergy., 39 (2009), 1314.  doi: 10.1111/j.1365-2222.2009.03301.x.  Google Scholar

[90]

R. Rooke, C. Waltzinger, C. Benoist and D. Mathis, Targeted complementation of MHC class II deficiency by intrathymic delivery of recombinant adenoviruses,, Immunity, 7 (1997), 123.  doi: 10.1016/S1074-7613(00)80515-4.  Google Scholar

[91]

C. Ruedl, M. Bachmann and M. Kopf, The antigen dose determines t helper subset development by regulation of CD40 ligand,, Eur. J. Immunol., 30 (2000), 2056.   Google Scholar

[92]

S. Sakaguchi, Regulatory T cells: Key controllers of immunologic self-tolerance,, Cell, 101 (2000), 455.   Google Scholar

[93]

J. Scheel, S. Weimans, A. Thiemann, E. Heisler and M. Hermann, Exposure of the murine RAW 264.7 macrophage cell line to hydroxyapatite dispersions of various composition and morphology: Assessment of cytotoxicity, activation and stress response,, Toxicol. in Vitro, 23 (2009), 531.  doi: 10.1016/j.tiv.2009.01.007.  Google Scholar

[94]

A. Schwingshackl, M. Duszyk, N. Brown and R. Moqbel, Human eosinophils release matrix metalloproteinase-9 on stimulation with TNF-alpha,, J. Allergy Clin. Immunol., 104 (1999), 983.  doi: 10.1016/S0091-6749(99)70079-5.  Google Scholar

[95]

D. Stickle, D. Lauffenburger and R. Daniele, The motile response of lung macrophages: Theoretical and experimental approaches using the linear under-agarose assay,, J. Leukoc. Biol., 38 (1985), 383.   Google Scholar

[96]

C. L. Stokes and D. A. Lauffenburger, Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis,, J. Theor. Biol., 152 (1991), 377.  doi: 10.1016/S0022-5193(05)80201-2.  Google Scholar

[97]

E. Suzuki, A. Tsutsumi, D. Goto, I. Matsumoto, S. Ito, M. Otsu, M. Onodera, S. Takahashi, Y. Sato and T. Sumida, Gene transduction of tristetraprolin or its active domain reduces TNF-alpha production by Jurkat T cells,, Int. J. Mol. Med., 17 (2006), 801.   Google Scholar

[98]

M. Swanson, W. Lee and V. Sanders, IFN-gamma production by Th1 cells generated from naive CD4+ T cells exposed to norepinephrine,, J. Immunol., 166 (2001), 232.   Google Scholar

[99]

S. Takeda, H. Rodewald, H. Arakawa, H. Bluethmann and T. Shimizu, MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span,, Immunity, 5 (1996), 217.  doi: 10.1016/S1074-7613(00)80317-9.  Google Scholar

[100]

R. Tyson, L. Stern and R. LeVeque, Fractional step methods applied to a chemotaxis model,, J. Math. Biol., 41 (2000), 455.  doi: 10.1007/s002850000038.  Google Scholar

[101]

R. Vogel and U. Behn, Th1-Th2 regulation and allergy: Bifurcation analysis of the non-autonomous system,, in, (2008), 145.  doi: 10.1007/978-0-8176-4556-4_13.  Google Scholar

[102]

Y. Wan, Multi-tasking of helper T cells,, Immunology, 130 (2010), 166.  doi: 10.1111/j.1365-2567.2010.03289.x.  Google Scholar

[103]

Y. Wang, K. Voo, B. Liu, C. Chen, B. Uygungil and W. Spoede, J. Bernstein, D. Huston and Y. Liu, A novel subset of CD4(+) T(H)2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma,, J. Exp. Med., 207 (2010), 2479.   Google Scholar

[104]

M. Wills-Karp, J. Luyimbazi, X. Xu, B. Schofield, T. Neben, C. Karp and D. Donaldson, Interleukin-13: Central mediator of allergic asthma,, Science, 282 (1998), 2258.  doi: 10.1126/science.282.5397.2258.  Google Scholar

[105]

M. Wills-Karp, J. Santeliz and C. L. Karp, The germless theory of allergic disease: Revisiting the hygiene hypothesis,, Nat. Rev. Immunol., 1 (2001), 69.  doi: 10.1038/35095579.  Google Scholar

[106]

D. Witherden, N. van Oers, C. Waltzinger, A. Weiss, C. Benoist and D. Mathis, Tetracycline-controllable selection of CD4(+) T cells: Half-life and survival signals in the absence of major histocompatibility complex class II molecules,, J. Exp. Med., 191 (2000), 355.  doi: 10.1084/jem.191.2.355.  Google Scholar

[107]

M. Yang, R. Kumar and P. Foster, Interferon-gamma and pulmonary macrophages contribute to the mechanisms underlying prolonged airway hyperresponsiveness,, Clin. Exp. Allergy, 40 (2010), 163.   Google Scholar

[108]

Y. Yang, H.-L. Zhang and J. Wu, Role of T regulatory cells in the pathogenesis of asthma,, Chest., 138 (2010), 1282.  doi: 10.1378/chest.10-1440.  Google Scholar

[109]

A. Yates, C. Bergmann, J. V. Hemmen, J. Stark and R. Callard, Cytokine-modulated regulation of helper T cell populations,, J. Theor. Biol., 206 (2000), 539.  doi: 10.1006/jtbi.2000.2147.  Google Scholar

[110]

A. Yates, R. Callard and J. Stark, Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: A model for cellular decision-making,, J. Theor. Biol., 231 (2004), 181.  doi: 10.1016/j.jtbi.2004.06.013.  Google Scholar

[111]

M. Yazdanbakhsh, P. G. Kremsner and R. van Ree, Allergy, parasites, and the hygiene hypothesis,, Science, 296 (2002), 490.  doi: 10.1126/science.296.5567.490.  Google Scholar

[112]

Y. Zhao, J. Yang, Y. Gao and W. Guo, Th17 immunity in patients with allergic asthma,, Int. Arch. Allergy Immunol., 151 (2010), 297.  doi: 10.1159/000250438.  Google Scholar

[113]

L. Zhou, I. Ivanov, R. Spolski, R. Min, K. Shenderov, T. Egawa, D. Levy, W. Leonard and D. Littman, IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways,, Nat. Immunol., 8 (2007), 967.   Google Scholar

[114]

J. Zhuang and G. Wogan, Growth and viability of macrophages continuously stimulated to produce nitric oxide,, Proc. Natl. Acad. Sci. USA, 94 (1997), 11875.  doi: 10.1073/pnas.94.22.11875.  Google Scholar

show all references

References:
[1]

R. Abe, S. Donnelly, T. Peng, R. Bucala and C. Metz, Peripheral blood fibrocytes: differentiation pathway and migration to wound sites,, J. Immunol., 166 (2001), 7556.   Google Scholar

[2]

O. Akbari, G. Freeman, E. Meyer, E. Greenfield, T. Chang, A. Sharpe, G. Berry, R. DeKruyff and D. Umetsu, Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity,, Nat. Med., 8 (2002), 1024.  doi: 10.1038/nm745.  Google Scholar

[3]

C. A. Akdis, T. Blesken, M. Akdis, B. Wüthrich and K. Blaser, Role of interleukin 10 in specific immunotherapy,, J. Clin. Invest., 102 (1998), 98.  doi: 10.1172/JCI2250.  Google Scholar

[4]

M. Akdis and C. A. Akdis, Mechanisms of allergen-specific immunotherapy,, J. Allergy Clin. Immunol., 119 (2007), 780.   Google Scholar

[5]

T. Alarcón, H. Byrne and P. Maini, Towards whole-organ modelling of tumour growth,, Prog. Biophys. Mol. Biol., 85 (2004), 451.   Google Scholar

[6]

J. F. Alcorn, C. R. Crowe and J. K. Kolls, $T_H$17 cells in asthma and COPD,, Annu. Rev. Physiol., 72 (2010), 495.   Google Scholar

[7]

D. Amsen, A. Antov, D. Jankovic, A. Sher, F. Radtke, A. Souabni, M. Busslinger, B. McCright, T. Gridley and R. Flavell, Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch,, Immunity, 27 (2007), 89.  doi: 10.1016/j.immuni.2007.05.021.  Google Scholar

[8]

F. Annunziato, L. Cosmi and S. Romagnani, Human and murine Th17,, Curr. Opin. HIV AIDS, 5 (2010), 114.  doi: 10.1097/COH.0b013e32833647c2.  Google Scholar

[9]

P. Barnes, Th2 cytokines and asthma: An introduction,, Respir. Res., 2 (2001), 64.   Google Scholar

[10]

R. L. Baror and L. Segel, On the role of a possible dialogue between cytokine and TCR-presentation mechanisms in the regulation of autoimmune disease,, J. Theor. Biol., 190 (1998), 161.   Google Scholar

[11]

U. Behn, H. Dambeck and G. Metzner, Modeling Th1-Th2 regulation, allergy, and hyposensitization,, in, (2000), 227.  doi: 10.1142/9789812813053_0011.  Google Scholar

[12]

M. Berry, C. Brightling, I. Pavord and A. Wardlaw, TNF-alpha in asthma,, Curr. Opin. Pharmacol., 7 (2007), 279.  doi: 10.1016/j.coph.2007.03.001.  Google Scholar

[13]

B. Bochner, B. Undem and L. Lichtenstein, Immunological aspects of allergic asthma,, Annu. Rev. Immunol., 12 (1994), 295.   Google Scholar

[14]

A. Bolinger and M. Taeubel, Recombinant interferon gamma for treatment of chronic granulomatous disease and other disorders,, Clin. Pharm., 11 (1992), 834.   Google Scholar

[15]

T. Bongartz, A. Sutton, M. Sweeting, I. Buchan, E. Matteson and V. Montori, Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: Systematic review and meta-analysis of rare harmful effects in randomized controlled trials,, JAMA, 295 (2006), 2275.  doi: 10.1001/jama.295.19.2275.  Google Scholar

[16]

L. Borish, H. Nelson, M. Lanz, L. Claussen, J. Whitmore, J. Agosti and L. Garrison, Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial,, Am. J. Respir. Crit. Care Med., 160 (1999), 1816.  doi: 10.1164/ajrccm.160.6.9808146.  Google Scholar

[17]

D. Bray, "Cell Movements: From Molecules to Motility,", Garland Pub., (2000).   Google Scholar

[18]

T. Brocker, Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells,, J. Exp. Med., 186 (1997), 1223.  doi: 10.1084/jem.186.8.1223.  Google Scholar

[19]

R. Callard and A. Yates, Immunology and mathematics: Crossing the divide,, Immunology, 115 (2005), 21.  doi: 10.1111/j.1365-2567.2005.02142.x.  Google Scholar

[20]

J. Carneiro, J. Stewart, A. Coutinho and G. Coutinho, The ontogeny of class-regulation of CD4+T lymphocte populations,, Int. Immunol., 7 (1995), 1265.  doi: 10.1093/intimm/7.8.1265.  Google Scholar

[21]

S. Cho, L. Stanciu, S. Holgate and S. Johnston, Increased interleukin-4, interleukin-5, and interferon-gamma in airway CD4+ and CD8+ T cells in atopic asthma,, Am. J. Respir. Crit. Care Med., 171 (2005), 224.  doi: 10.1164/rccm.200310-1416OC.  Google Scholar

[22]

D. Coombs and B. Goldstein, Effects of the geometry of the immunological synapse on the delivery of effector molecules,, Biophys. J., 87 (2004), 2215.  doi: 10.1529/biophysj.104.045674.  Google Scholar

[23]

L. Cosmi, F. Liotta, E. Maggi, S. Romagnani and F. Annunziato, Th17 cells: New players in asthma pathogenesis,, Allergy, 66 (2011), 989.  doi: 10.1111/j.1398-9995.2011.02576.x.  Google Scholar

[24]

L. Cosmi, L. Maggi, V. Santarlasci, M. Capone, E. Cardilicchia and F. F. et al., Identification of a novel subset of human circulating memory CD4(+) T cells that produce both IL-17A and IL-4,, J. Allergy Clin. Immunol., 125 (2010), 222.  doi: 10.1016/j.jaci.2009.10.012.  Google Scholar

[25]

E. Cutz, H. Levison and D. Cooper, Ultrastructure of airways in children with asthma,, Histopathology, 2 (1978), 407.  doi: 10.1111/j.1365-2559.1978.tb01735.x.  Google Scholar

[26]

E. Deenick, A. Gett and P. Hodgkin, Stochastic model of T cell proliferation: A calculus revealing IL-2 regulation of precursor frequencies, cell cycle time, and survival,, J. Immunol., 170 (2003), 4963.   Google Scholar

[27]

T. Demuth, N. Hopf, O. Kempski, D. Sauner, M. Herr, A. Giese and A. Perneczky, Migratory activity of human glioma cell lines in vitro assessed by continuous single cell observation,, Clin. Exp. Metastasis, 18 (2000), 589.   Google Scholar

[28]

T. V. Dyke, A. Reilly and R. Genco, Regression line analysis of neutrophil chemotaxis,, Immunopharmacology, 4 (1982), 23.   Google Scholar

[29]

S. Eisenbarth, D. Piggott, J. Huleatt, I. Visintin, C. Herrick and K. Bottomly, Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen,, J. Exp. Med., 196 (2002), 1645.  doi: 10.1084/jem.20021340.  Google Scholar

[30]

M. Fishman and A. Perelson, Modeling T cell-antigen presenting cell interactions,, J. Theor. Biol., 160 (1993), 311.  doi: 10.1006/jtbi.1993.1021.  Google Scholar

[31]

M. Fishman and A. Perelson, Th1/2 cross-regulation,, J. Theor. Biol., 170 (1994), 25.   Google Scholar

[32]

M. Fishman and A. Perelson, Th1/Th2 differentiation and cross regulation,, Bull. Math. Biol., 61 (1999), 403.  doi: 10.1006/bulm.1998.0074.  Google Scholar

[33]

K. Francis and B. Palsson, Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion,, Proc. Natl. Acad. Sci. USA, 94 (1997), 12258.  doi: 10.1073/pnas.94.23.12258.  Google Scholar

[34]

J. Gao, Q. Xue, C. Papasian and D. Morrison, Bacterial DNA and lipopolysaccharide induce synergistic production of TNF-alpha through a post-transcriptional mechanism,, J. Immunol., 166 (2001), 6855.   Google Scholar

[35]

J. Gereda, D. Leung, A. Thatayatikom, J. Streib, M. Price, M. Klinnert and A. Liu, Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma,, Lancet., 355 (2000), 1680.  doi: 10.1016/S0140-6736(00)02239-X.  Google Scholar

[36]

A. Gett and P. Hodgkin, A cellular calculus for signal integration by T cells,, Nat. Immunol., 1 (2000), 239.   Google Scholar

[37]

J. Glasgow, B. Farrell, E. Fisher, D. Lauffenburger and R. Daniele, The motile response of alveolar macrophages. an experimental study using single-cell and cell population approaches,, Am. Rev. Respir. Dis., 139 (1989), 320.  doi: 10.1164/ajrccm/139.2.320.  Google Scholar

[38]

F. Groß, G. Metznerb and U. Behn, Mathematical modelling of allergy and specific immunotherapy: Th1-Th2-Treg interactions,, J. Theor. Biol., 269 (2011), 70.  doi: 10.1016/j.jtbi.2010.10.013.  Google Scholar

[39]

G. Grunig, M. Warnock, A. Wakil, R. Venkayya, F. Brombacher, D. Rennick, D. Sheppard, M. Mohrs, D. Donaldson, R. Locksley and D. Corry, Requirement for IL-13 independently of IL-4 in experimental asthma,, Science, 282 (1998), 2261.   Google Scholar

[40]

H. Gudmundsdottir, A. Wells and L. Turka, Dynamics and requirements of T cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity,, J. Immunol., 162 (1999), 5212.   Google Scholar

[41]

Q. Hamid and M. Tulic, Immunobiology of asthma,, Annu. Rev. Physiol., 71 (2009), 489.  doi: 10.1146/annurev.physiol.010908.163200.  Google Scholar

[42]

M. Harber, A. Sundstedt and D. Wraith, The role of cytokines in immunological tolerance: potential for therapy,, Expert. Rev. Mol. Med., 2 (2000), 1.  doi: 10.1017/S1462399400002143.  Google Scholar

[43]

B. Hegedus, J. Zach, A. Czirok, J. Lovey and T. Vicsek, Irradiation and taxol treatment result in non-monotonous, dose-dependent changes in the motility of glioblastoma cells,, J. Neurooncol., 67 (2004), 147.  doi: 10.1023/B:NEON.0000021826.73020.f3.  Google Scholar

[44]

S. Herrmann, G. Winter, S. Mohl, F. Siepmann and J. Siepmann, Mechanisms controlling protein release from lipidic implants: Effects of peg addition,, Journal of Controlled Release, 118 (2007), 161.  doi: 10.1016/j.jconrel.2006.11.001.  Google Scholar

[45]

P. Howarth, K. Babu, H. Arshad, L. Lau, M. Buckley, W. McConnell, P. Beckett, M. Ali, A. Chauhan, S. Wilson, A. Reynolds, D. Davies and S. Holgate, Tumour necrosis factor (TNFalpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma,, Thorax, 60 (2005), 1012.   Google Scholar

[46]

A. Jansson, M. Fagerlind, D. Karlsson, P. Nilsson and M. Cooley, In silico simulations suggest that Th-cell development is regulated by both selective and instructive mechanisms,, Immunol. Cell Biol., 84 (2006), 218.  doi: 10.1111/j.1440-1711.2006.01425.x.  Google Scholar

[47]

A. Jansson, M. Harlen, S. Karlsson, P. Nilsson and M. Cooley, 3D computation modelling of the influence of cytokine secretion on Th-cell development suggests that negative selection (inhibition of Th1 cells) is more effective than positive selection by IL-4 for Th2 cell dominance modelling Th cell selection,, Immunology and Cell Biology, 85 (2007), 189.  doi: 10.1038/sj.icb.7100023.  Google Scholar

[48]

S. Jeon, S. Oh, H. Park, Y. Kim, E. Shim, H. Lee, M. Oh, B. Bang, E. Chun, S. Kim, Y. Gho, Z. Zhu, Y. Kim and Y. Kim, TH2 and TH1 lung inflammation induced by airway allergen sensitization with low and high doses of double-stranded RNA,, J. Allergy Clin. Immunol., 120 (2007), 803.  doi: 10.1016/j.jaci.2007.05.030.  Google Scholar

[49]

T. Katakai, K. Mori, T. Masuda and A. Shimizu, Differential localization of Th1 and Th2 cells in autoimmune gastritis,, Int. Immunol., 10 (1998), 1325.  doi: 10.1093/intimm/10.9.1325.  Google Scholar

[50]

Y. Kim and A. Friedman, Interaction of tumor with its microenvironment : A mathematical model,, Bull. Math. Biol., 72 (2010), 1029.  doi: 10.1007/s11538-009-9481-z.  Google Scholar

[51]

Y. Kim, S. Lawler, M. Nowicki, E. Chiocca and A. Friedman, A mathematical model of brain tumor: Pattern formation of glioma cells outside the tumor spheroid core,, J. Theo. Biol., 260 (2009), 359.  doi: 10.1016/j.jtbi.2009.06.025.  Google Scholar

[52]

Y. Kim and S. Lim, The role of the microenvironment in tumor invasion,, 2009 Proceedings of the Fourth SIAM Conference on Mathematics for Industry (MI09), (2010), 84.  doi: 10.1016/j.pbiomolbio.2011.06.006.  Google Scholar

[53]

Y. Kim, S. Oh, S. Jeon, H. Park, S. Lee, E. Chun, B. Bang, H. Lee, M. Oh, Y. Kim, J. Kim, Y. Gho, S. Cho, K. Min, Y. Kim and Z. Zhu, Airway exposure levels of lipopolysaccharide determine type 1 versus type 2 experimental asthma,, J. Immunol., 178 (2007), 5375.   Google Scholar

[54]

Y. Kim, M. Stolarska and H. Othmer, The role of the microenvironment in tumor growth and invasion,, Progress in Biophysics and Molecular Biology, 106 (2011), 353.  doi: 10.1016/j.pbiomolbio.2011.06.006.  Google Scholar

[55]

Y. Kim, J. C. S.W. Hong, T. Shin, H. Moon and E. C. et al., Vascular endothelial growth factor is a key mediator in the development of T cell priming and its polarization to type 1 and type 17 T helper cells in the airways,, J. Immunol., 183 (2009), 5113.  doi: 10.4049/jimmunol.0901566.  Google Scholar

[56]

Y. Kim, J. Wallace, F. Li, M. Ostrowski and A. Friedman, Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumor: a mathematical model and experiments,, J. Math. Biol., 61 (2010), 401.  doi: 10.1007/s00285-009-0307-2.  Google Scholar

[57]

J. Kirberg, A. Berns and H. Boehmer, Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules,, J. Exp. Med., 186 (1997), 1269.  doi: 10.1084/jem.186.8.1269.  Google Scholar

[58]

D. Kirschner and J. Panetta, Modeling immunotherapy of the tumor-immune interaction,, J. Math. Biol., 37 (1998), 235.  doi: 10.1007/s002850050127.  Google Scholar

[59]

L. Kreuz and A. Levy, Physical properties of chick interferon,, J. Bacteriology, 89 (1965), 462.   Google Scholar

[60]

H. Kuipers, D. Hijdra, V. Vries, H. Hammad, J. Prins, A. Coyle, H. Hoogsteden and B. Lambrecht, Lipopolysaccharide-induced suppression of airway Th2 responses does not require IL-12 production by dendritic cells,, J. Immunol., 171 (2003), 3645.   Google Scholar

[61]

R. Kumar, D. Webb, C. Herbert and P. Foster, Interferon-gamma as a possible target in chronic asthma,, Inflamm. Allergy Drug Targets, 5 (2006), 253.   Google Scholar

[62]

C. Langrish, Y. Chen., W. M. Blumenschein, J. Mattson, B. Basham, J. Sedgwick, T. McClanahan, R. Kastelein and D. Cua, Il-23 drives a pathogenic T cell population that induces autoimmune inflammation,, J. Exp. Med., 201 (2005), 233.  doi: 10.1084/jem.20041257.  Google Scholar

[63]

Y. Lee, H. Turner, C. Maynard, J. Oliver, D. Chen, C. Elson and C. Weaver, Late developmental plasticity in the T helper 17 lineage,, Immunity, 30 (2009), 92.  doi: 10.1016/j.immuni.2008.11.005.  Google Scholar

[64]

C. M. Lloyd and C. M. Hawrylowicz, Regulatory T cells in asthma,, Immunity, 31 (2009), 438.  doi: 10.1016/j.immuni.2009.08.007.  Google Scholar

[65]

H. Lortat-Jacob, F. Baltzer and J. Grimaud, Heparin decreases the blood clearance of interferon-gamma and increases its activity by limiting the processing of its carboxyl-terminal sequence,, The Journal of Biological Chemistry, 271 (1996), 16139.   Google Scholar

[66]

G. Lugo-Villarino, R. Maldonado-Lopez, R. Possemato, C. Penaranda and L. Glimcher, T-bet is required for optimal production of IFN-gamma and antigen-specific t cell activation by dendritic cells,, Proc. Natl. Acad. Sci. USA, 100 (2003), 7749.   Google Scholar

[67]

A. Magnan, L. Mély, C. Camilla, M. Badier, F. Montero-Julian, C. Guillot, B. Casano, S. Prato, V. Fert, P. Bongrand and D. Vervloet, Assessment of the Th1/Th2 paradigm in whole blood in atopy and asthma. Increased IFN-gamma-producing CD8(+) T cells in asthma,, Am. J. Respir. Crit. Care Med., 161 (2000), 1790.  doi: 10.1164/ajrccm.161.6.9906130.  Google Scholar

[68]

S. Marino, I. Hogue, C. Ray and D. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology,, J. Theor. Biol., 254 (2008), 178.  doi: 10.1016/j.jtbi.2008.04.011.  Google Scholar

[69]

M. Masoli, D. Fabian, S. Holt and R. Beasley, The global burden of asthma: Executive summary of the GINA dissemination committee report,, Allergy, 59 (2004), 469.  doi: 10.1111/j.1398-9995.2004.00526.x.  Google Scholar

[70]

G. Mazzarella, A. Bianco, E. Catena, R. De Palma and G. Abbate, Th1/Th2 lymphocyte polarization in asthma,, Allergy, 55 (2000), 6.  doi: 10.1034/j.1398-9995.2000.00511.x.  Google Scholar

[71]

O. Michel, R. Ginanni, J. Duchateau, F. Vertongen, B. Bon and R. Sergysels, Domestic endotoxin exposure and clinical severity of asthma,, Clin. Exp. Allergy, 21 (1991), 441.  doi: 10.1111/j.1365-2222.1991.tb01684.x.  Google Scholar

[72]

M. Miller, S. Wei, I. Parker and M. Cahalan, Two-photon imaging of lymphocyte motility and antigen response in intact lymph node,, Science, 296 (2002), 1869.  doi: 10.1126/science.1070051.  Google Scholar

[73]

H.-G. Moon, Y.-M. Tae, Y.-S. Kim, S. Gyu Jeon, S.-Y. Oh, Y. Song Gho, Z. Zhu and Y.-K. Kim, Conversion of Th17-type into Th2-type inflammation by acetyl salicylic acid via the adenosine and uric acid pathway in the lung,, Allergy, 65 (2010), 1093.  doi: 10.1111/j.1398-9995.2010.02352.x.  Google Scholar

[74]

B. Morel, J. Kalagnanam and P. Morel, Mathematical modelling of Th1-Th2 dynamics,, in, (1992), 171.   Google Scholar

[75]

J. Morjaria, K. Babu, S. Holgate and R. Polosa, Tumour necrosis factor-alpha as a therapeutic target in asthma,, Drug Discovery Today: Therapeutic Strategies, 3 (2006), 309.  doi: 10.1016/j.ddstr.2006.09.007.  Google Scholar

[76]

J. Morjaria, K. Babu, R. Polosa and S. Holgate, Tumour necrosis factor-alpha in severe corticosteroid-refractory asthma,, Exp. Rev. Resp. Med., 1 (2007), 51.   Google Scholar

[77]

T. Mosmann, H. Cherwinski, M. Bond, M. Giedlin and R. Coffman, Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins,, J. Immunol., 136 (1986), 2348.   Google Scholar

[78]

T. Mosmann and R. Coffman, TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties,, Annu. Rev. Immunol., 7 (1989), 145.   Google Scholar

[79]

E. Muraille, O. Leo and M. Kaufman, The role of antigen presentation in the regulation of class-specific (Th1/Th2) immune responses,, J. Biol. Syst., 3 (1995), 397.  doi: 10.1142/S021833909500037X.  Google Scholar

[80]

A. Murphy, "Asthma in Focus,", In Focus Series, (2007).   Google Scholar

[81]

K. Murphy, P. Travers and M. Walport, "Janeway's Immunobiology,", $7^{th}$ edition, (2007).   Google Scholar

[82]

L. Narhi, J. Philo, T. Li, M. Zhang, B. Samal and T. Arakawa, Induction of alpha-helix in the beta-sheet protein tumor necrosis factor-alpha: Acid-induced denaturation,, Biochemistry, 35 (1996), 11454.  doi: 10.1021/bi952767n.  Google Scholar

[83]

D. Nesic and S. Vukmanovic, MHC class I is required for peripheral accumulation of CD8+ thymic emigrants,, J. Immunol, 160 (1998), 3705.   Google Scholar

[84]

S. Olenchock, J. May, D. Pratt and P. Morey, Occupational exposures to airborne endotoxins in agriculture,, Prog. Clin. Biol. Res., 231 (1987), 475.   Google Scholar

[85]

J. Oliver, L. Bland, C. Oettinger, M. Arduino, S. McAllister, S. Aguero and M. Favero, Cytokine kinetics in an in vitro whole blood model following an endotoxin challenge,, Lymphokine Cytokine Res., 12 (1993), 115.   Google Scholar

[86]

G. J. Pettet, H. M. Byrne, D. L. S. Mcelwain and J. Norbury, A model of wound-healing angiogenesis in soft tissue,, Math. Bios., 136 (1996), 35.  doi: 10.1016/0025-5564(96)00044-2.  Google Scholar

[87]

A. Ray, A. Khare, N. Krishnamoorthy, Z. Qi and P. Ray, Regulatory T cells in many flavors control asthma,, Mucosal. Immunol., 3 (2010), 216.  doi: 10.1038/mi.2010.4.  Google Scholar

[88]

J. Richter, G. Metzner and U. Behn, Mathematical modelling of venom immunotherapy,, Journal of Theoretical Medicine, 4 (2002), 119.  doi: 10.1080/10273660290022172.  Google Scholar

[89]

D. S. Robinson, Regulatory T cells and asthma,, Clin. Exp. Allergy., 39 (2009), 1314.  doi: 10.1111/j.1365-2222.2009.03301.x.  Google Scholar

[90]

R. Rooke, C. Waltzinger, C. Benoist and D. Mathis, Targeted complementation of MHC class II deficiency by intrathymic delivery of recombinant adenoviruses,, Immunity, 7 (1997), 123.  doi: 10.1016/S1074-7613(00)80515-4.  Google Scholar

[91]

C. Ruedl, M. Bachmann and M. Kopf, The antigen dose determines t helper subset development by regulation of CD40 ligand,, Eur. J. Immunol., 30 (2000), 2056.   Google Scholar

[92]

S. Sakaguchi, Regulatory T cells: Key controllers of immunologic self-tolerance,, Cell, 101 (2000), 455.   Google Scholar

[93]

J. Scheel, S. Weimans, A. Thiemann, E. Heisler and M. Hermann, Exposure of the murine RAW 264.7 macrophage cell line to hydroxyapatite dispersions of various composition and morphology: Assessment of cytotoxicity, activation and stress response,, Toxicol. in Vitro, 23 (2009), 531.  doi: 10.1016/j.tiv.2009.01.007.  Google Scholar

[94]

A. Schwingshackl, M. Duszyk, N. Brown and R. Moqbel, Human eosinophils release matrix metalloproteinase-9 on stimulation with TNF-alpha,, J. Allergy Clin. Immunol., 104 (1999), 983.  doi: 10.1016/S0091-6749(99)70079-5.  Google Scholar

[95]

D. Stickle, D. Lauffenburger and R. Daniele, The motile response of lung macrophages: Theoretical and experimental approaches using the linear under-agarose assay,, J. Leukoc. Biol., 38 (1985), 383.   Google Scholar

[96]

C. L. Stokes and D. A. Lauffenburger, Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis,, J. Theor. Biol., 152 (1991), 377.  doi: 10.1016/S0022-5193(05)80201-2.  Google Scholar

[97]

E. Suzuki, A. Tsutsumi, D. Goto, I. Matsumoto, S. Ito, M. Otsu, M. Onodera, S. Takahashi, Y. Sato and T. Sumida, Gene transduction of tristetraprolin or its active domain reduces TNF-alpha production by Jurkat T cells,, Int. J. Mol. Med., 17 (2006), 801.   Google Scholar

[98]

M. Swanson, W. Lee and V. Sanders, IFN-gamma production by Th1 cells generated from naive CD4+ T cells exposed to norepinephrine,, J. Immunol., 166 (2001), 232.   Google Scholar

[99]

S. Takeda, H. Rodewald, H. Arakawa, H. Bluethmann and T. Shimizu, MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span,, Immunity, 5 (1996), 217.  doi: 10.1016/S1074-7613(00)80317-9.  Google Scholar

[100]

R. Tyson, L. Stern and R. LeVeque, Fractional step methods applied to a chemotaxis model,, J. Math. Biol., 41 (2000), 455.  doi: 10.1007/s002850000038.  Google Scholar

[101]

R. Vogel and U. Behn, Th1-Th2 regulation and allergy: Bifurcation analysis of the non-autonomous system,, in, (2008), 145.  doi: 10.1007/978-0-8176-4556-4_13.  Google Scholar

[102]

Y. Wan, Multi-tasking of helper T cells,, Immunology, 130 (2010), 166.  doi: 10.1111/j.1365-2567.2010.03289.x.  Google Scholar

[103]

Y. Wang, K. Voo, B. Liu, C. Chen, B. Uygungil and W. Spoede, J. Bernstein, D. Huston and Y. Liu, A novel subset of CD4(+) T(H)2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma,, J. Exp. Med., 207 (2010), 2479.   Google Scholar

[104]

M. Wills-Karp, J. Luyimbazi, X. Xu, B. Schofield, T. Neben, C. Karp and D. Donaldson, Interleukin-13: Central mediator of allergic asthma,, Science, 282 (1998), 2258.  doi: 10.1126/science.282.5397.2258.  Google Scholar

[105]

M. Wills-Karp, J. Santeliz and C. L. Karp, The germless theory of allergic disease: Revisiting the hygiene hypothesis,, Nat. Rev. Immunol., 1 (2001), 69.  doi: 10.1038/35095579.  Google Scholar

[106]

D. Witherden, N. van Oers, C. Waltzinger, A. Weiss, C. Benoist and D. Mathis, Tetracycline-controllable selection of CD4(+) T cells: Half-life and survival signals in the absence of major histocompatibility complex class II molecules,, J. Exp. Med., 191 (2000), 355.  doi: 10.1084/jem.191.2.355.  Google Scholar

[107]

M. Yang, R. Kumar and P. Foster, Interferon-gamma and pulmonary macrophages contribute to the mechanisms underlying prolonged airway hyperresponsiveness,, Clin. Exp. Allergy, 40 (2010), 163.   Google Scholar

[108]

Y. Yang, H.-L. Zhang and J. Wu, Role of T regulatory cells in the pathogenesis of asthma,, Chest., 138 (2010), 1282.  doi: 10.1378/chest.10-1440.  Google Scholar

[109]

A. Yates, C. Bergmann, J. V. Hemmen, J. Stark and R. Callard, Cytokine-modulated regulation of helper T cell populations,, J. Theor. Biol., 206 (2000), 539.  doi: 10.1006/jtbi.2000.2147.  Google Scholar

[110]

A. Yates, R. Callard and J. Stark, Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: A model for cellular decision-making,, J. Theor. Biol., 231 (2004), 181.  doi: 10.1016/j.jtbi.2004.06.013.  Google Scholar

[111]

M. Yazdanbakhsh, P. G. Kremsner and R. van Ree, Allergy, parasites, and the hygiene hypothesis,, Science, 296 (2002), 490.  doi: 10.1126/science.296.5567.490.  Google Scholar

[112]

Y. Zhao, J. Yang, Y. Gao and W. Guo, Th17 immunity in patients with allergic asthma,, Int. Arch. Allergy Immunol., 151 (2010), 297.  doi: 10.1159/000250438.  Google Scholar

[113]

L. Zhou, I. Ivanov, R. Spolski, R. Min, K. Shenderov, T. Egawa, D. Levy, W. Leonard and D. Littman, IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways,, Nat. Immunol., 8 (2007), 967.   Google Scholar

[114]

J. Zhuang and G. Wogan, Growth and viability of macrophages continuously stimulated to produce nitric oxide,, Proc. Natl. Acad. Sci. USA, 94 (1997), 11875.  doi: 10.1073/pnas.94.22.11875.  Google Scholar

[1]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[2]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[3]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[6]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[7]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[8]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[9]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[10]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[11]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[12]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (0)

[Back to Top]