• Previous Article
    The impact of an imperfect vaccine and pap cytology screening on the transmission of human papillomavirus and occurrence of associated cervical dysplasia and cancer
  • MBE Home
  • This Issue
  • Next Article
    Saturated treatments and measles resurgence episodes in South Africa: A possible linkage
2013, 10(4): 1159-1171. doi: 10.3934/mbe.2013.10.1159

Modelling seasonal HFMD with the recessive infection in Shandong, China

1. 

Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, China, China, China

2. 

Department of Mathematics, North University of China, School of Mechatronic Engineering, North University of China, Taiyuan, Shanxi 030051, China

Received  March 2012 Revised  February 2013 Published  June 2013

Hand, foot and mouth disease (HFMD) is one of the major public-health problems in China. Based on the HFMD data of the Department of Health of Shandong Province, we propose a dynamic model with periodic transmission rates to investigate the seasonal HFMD. After evaluating the basic reproduction number, we analyze the dynamical behaviors of the model and simulate the HFMD data of Shandong Province. By carrying out the sensitivity analysis of some key parameters, we conclude that the recessive subpopulation plays an important role in the spread of HFMD, and only quarantining the infected is not an effective measure in controlling the disease.
Citation: Yangjun Ma, Maoxing Liu, Qiang Hou, Jinqing Zhao. Modelling seasonal HFMD with the recessive infection in Shandong, China. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1159-1171. doi: 10.3934/mbe.2013.10.1159
References:
[1]

O. N. Bjornstad, B. F. Finkenstadt and B. T. Grenfell, Dynamics of measles epidemics: Estimating scaling of transmission rates using a time series SIR model, Ecol. Monogr., 72 (2002), 169-184.

[2]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436. doi: 10.1007/s00285-006-0015-0.

[3]

N. Bacaër, Approximation of the basic reproduction number $R_{0}$ for vector-borne diseases with a periodic vector population, Bull. Math. Biol., 69 (2007), 1067-1091. doi: 10.1007/s11538-006-9166-9.

[4]

CDC, "Hand, Foot, and Mouth Disease (HFMD)$-$About Hand, Foot, and Mouth (HFMD)," http://www.cdc.gov/hand-foot-mouth/about/index.html.

[5]

CDC, Notes from the Field: Severe Hand, Foot, and Mouth Disease Associated with Coxsackievirus A6-Alabama, Connecticut, California, and Nevada, November 2011-February 2012, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6112a5.htm.

[6]

S. F. Dowell, Seasonal variation in host susceptibility and cycles of certain infectious diseases, Emerg. Infect. Dis., 7 (2001), 369-374.

[7]

J. Dushoff, J. B. Poltkin, S. A. Levin and D. J. D. Earn, Dynamical resonance can account for seasonality of influenza epidemics, Proc. Natl. Acad. Sci., 101 (2004), 16915-16916. doi: 10.1073/pnas.0407293101.

[8]

Z. Grossman, Oscillatory phenomena in a model of infectious diseases, Theory. Pop. Biol., 18 (1980), 204-243. doi: 10.1016/0040-5809(80)90050-7.

[9]

J. L. Liu, Threshold dynamics for a HFMD epidemic model with periodic transmission rate, Nonlinear. Dyn., 64 (2011), 89-95. doi: 10.1007/s11071-010-9848-6.

[10]

M. Y. Liu, W. Liu, J. Luo, Y. Liu, Y. Zhu, H. Berman and J. Wu, Characterization of an Outbreak of Hand, Foot, and Mouth Disease in Nanchang, China in 2010, PLoS ONE., 6 (2011), e25287. doi: 10.1371/journal.pone.0025287.

[11]

W. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps.i.seasonal variation in contact rates, Am. J. Epidemiol., 98 (1973), 453-468.

[12]

J. Ma and Z. Ma, Epidemic threshold conditions for seasonally forced SEIR models, Math. Biosci. Eng., 3 (2006), 161-172. doi: 10.3934/mbe.2006.3.161.

[13]

I. A. Moneim and D. Greenhalgh, Use of a periodic vaccination strategy to control the spread of epidemics with seasonally varying contact rate, Math. Biosci. Eng., 2 (2005), 591-611. doi: 10.3934/mbe.2005.2.591.

[14]

Z. Ma, Y. Zhou, W. Wang and Z. Jin, "Mathematical Modeling and Studying of Dynamic Models of Infectious Disease," Science Press, London, 2004.

[15]

L. Perko, "Differential Equations and Dynamical System," Springer-Verlag, New York, 2000.

[16]

I. Schwartz, Small amplitude, long periodic out breaks in seasonally driven epidemics, J. Math. Biol., 30 (1992), 473-491. doi: 10.1007/BF00160532.

[17]

I. Schwartz and H. Smith, Infinite subharmonic bifurcation in an SIER epidemic model, J. Math. Biol., 18 (1983), 233-253. doi: 10.1007/BF00276090.

[18]

, Shandong Statistical Information, http://www.stats-sd.gov.cn/2007/tjsj/tjsj.asp?lbbm=1.

[19]

F. C. S. Tiing and J. Labadin, A simple deterministic model for the spread of hand, foot and mouth disease (HFMD) in Sarawak, in "Second Asia International Conference on Modelling and Simulation," Conference Publications, (2008), 947-952. doi: 10.1109/AMS.2008.139.

[20]

M. Urashima, N. Shindo and N. Okable, Seasonal model of herpangina and hand-foot-mouth disease to simulate annual fluctuations in urban warming in Tokyo, Jpn. J. Infect. Dis., 56 (2003), 48-53.

[21]

WHO, Emerging disease surveillance and response, http://www.wpro.who.int/emerging_diseases/HFMD/en/index.html.

[22]

D. Wu, C. Ke, W. Li, M. Corina, J. Yan, C. Ma, H. Zen and J.Su, A large outbreak of hand, foot, and mouth disease caused by EV71 and CAV16 in Guangdong, China, 2009, Arch. Virol., 156 (2011), 945-953.

[23]

A. Weber, M. Weber and P. Milligan, Modeling epidemics caused by respiratory syncytial virus (RSV), Math. Biosci., 172 (2001), 95-113. doi: 10.1016/S0025-5564(01)00066-9.

[24]

L. J.White, J. N.Mandl, M. G. Gomes, A. T. Bodley-Tickell, P. A.Cane, P. Perez-Brena, J. C. Aguilar, M. M. Siqueira, S. A. Portes, S. M. Straliotto, M. Waris, D. J. Nokes and G. F. Medley, Understanding the transmissiondynamics of respiratorysyncytialvirus using multiple time series and nested models, Math. Biosci., 209 (2007), 222-239. doi: 10.1016/j.mbs.2006.08.018.

[25]

W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Biol. Dyn., 3 (2008), 699-717. doi: 10.1007/s10884-008-9111-8.

[26]

Q. Zhu, Y. T. Hao, J. Q. Ma , S. C. Yu and Y. Wang, Surveillance of Hand, Foot, and Mouth Disease in Mainland China (2008-2009), Biomed. Environ. Sci., 4 (2011), 349-356.

[27]

Y. Zhang, X. J. Tan, H. Y. Wang, D. M. Yan, S. L. Zhu, D. Y. Wang, F. Ji, X. J. Wang, Y. J. Gao, L. Chen, H. Q. An, D. X. Li, S. W. Wang, A. Q. Xu, Z. J. Wang and W. B. Xu, An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China, J. Clin. Virol., 44 (2009), 262-267.

[28]

J. Zhang, Z. Jin, G.-Q. Sun, X.-D. Sun and S. Ruan, Modeling seasonal rabies epidemics in China, Bull. Math. Biol., 74 (2012), 1226-1251. doi: 10.1007/s11538-012-9720-6.

[29]

F. Zhang and X. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516. doi: 10.1016/j.jmaa.2006.01.085.

show all references

References:
[1]

O. N. Bjornstad, B. F. Finkenstadt and B. T. Grenfell, Dynamics of measles epidemics: Estimating scaling of transmission rates using a time series SIR model, Ecol. Monogr., 72 (2002), 169-184.

[2]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436. doi: 10.1007/s00285-006-0015-0.

[3]

N. Bacaër, Approximation of the basic reproduction number $R_{0}$ for vector-borne diseases with a periodic vector population, Bull. Math. Biol., 69 (2007), 1067-1091. doi: 10.1007/s11538-006-9166-9.

[4]

CDC, "Hand, Foot, and Mouth Disease (HFMD)$-$About Hand, Foot, and Mouth (HFMD)," http://www.cdc.gov/hand-foot-mouth/about/index.html.

[5]

CDC, Notes from the Field: Severe Hand, Foot, and Mouth Disease Associated with Coxsackievirus A6-Alabama, Connecticut, California, and Nevada, November 2011-February 2012, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6112a5.htm.

[6]

S. F. Dowell, Seasonal variation in host susceptibility and cycles of certain infectious diseases, Emerg. Infect. Dis., 7 (2001), 369-374.

[7]

J. Dushoff, J. B. Poltkin, S. A. Levin and D. J. D. Earn, Dynamical resonance can account for seasonality of influenza epidemics, Proc. Natl. Acad. Sci., 101 (2004), 16915-16916. doi: 10.1073/pnas.0407293101.

[8]

Z. Grossman, Oscillatory phenomena in a model of infectious diseases, Theory. Pop. Biol., 18 (1980), 204-243. doi: 10.1016/0040-5809(80)90050-7.

[9]

J. L. Liu, Threshold dynamics for a HFMD epidemic model with periodic transmission rate, Nonlinear. Dyn., 64 (2011), 89-95. doi: 10.1007/s11071-010-9848-6.

[10]

M. Y. Liu, W. Liu, J. Luo, Y. Liu, Y. Zhu, H. Berman and J. Wu, Characterization of an Outbreak of Hand, Foot, and Mouth Disease in Nanchang, China in 2010, PLoS ONE., 6 (2011), e25287. doi: 10.1371/journal.pone.0025287.

[11]

W. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps.i.seasonal variation in contact rates, Am. J. Epidemiol., 98 (1973), 453-468.

[12]

J. Ma and Z. Ma, Epidemic threshold conditions for seasonally forced SEIR models, Math. Biosci. Eng., 3 (2006), 161-172. doi: 10.3934/mbe.2006.3.161.

[13]

I. A. Moneim and D. Greenhalgh, Use of a periodic vaccination strategy to control the spread of epidemics with seasonally varying contact rate, Math. Biosci. Eng., 2 (2005), 591-611. doi: 10.3934/mbe.2005.2.591.

[14]

Z. Ma, Y. Zhou, W. Wang and Z. Jin, "Mathematical Modeling and Studying of Dynamic Models of Infectious Disease," Science Press, London, 2004.

[15]

L. Perko, "Differential Equations and Dynamical System," Springer-Verlag, New York, 2000.

[16]

I. Schwartz, Small amplitude, long periodic out breaks in seasonally driven epidemics, J. Math. Biol., 30 (1992), 473-491. doi: 10.1007/BF00160532.

[17]

I. Schwartz and H. Smith, Infinite subharmonic bifurcation in an SIER epidemic model, J. Math. Biol., 18 (1983), 233-253. doi: 10.1007/BF00276090.

[18]

, Shandong Statistical Information, http://www.stats-sd.gov.cn/2007/tjsj/tjsj.asp?lbbm=1.

[19]

F. C. S. Tiing and J. Labadin, A simple deterministic model for the spread of hand, foot and mouth disease (HFMD) in Sarawak, in "Second Asia International Conference on Modelling and Simulation," Conference Publications, (2008), 947-952. doi: 10.1109/AMS.2008.139.

[20]

M. Urashima, N. Shindo and N. Okable, Seasonal model of herpangina and hand-foot-mouth disease to simulate annual fluctuations in urban warming in Tokyo, Jpn. J. Infect. Dis., 56 (2003), 48-53.

[21]

WHO, Emerging disease surveillance and response, http://www.wpro.who.int/emerging_diseases/HFMD/en/index.html.

[22]

D. Wu, C. Ke, W. Li, M. Corina, J. Yan, C. Ma, H. Zen and J.Su, A large outbreak of hand, foot, and mouth disease caused by EV71 and CAV16 in Guangdong, China, 2009, Arch. Virol., 156 (2011), 945-953.

[23]

A. Weber, M. Weber and P. Milligan, Modeling epidemics caused by respiratory syncytial virus (RSV), Math. Biosci., 172 (2001), 95-113. doi: 10.1016/S0025-5564(01)00066-9.

[24]

L. J.White, J. N.Mandl, M. G. Gomes, A. T. Bodley-Tickell, P. A.Cane, P. Perez-Brena, J. C. Aguilar, M. M. Siqueira, S. A. Portes, S. M. Straliotto, M. Waris, D. J. Nokes and G. F. Medley, Understanding the transmissiondynamics of respiratorysyncytialvirus using multiple time series and nested models, Math. Biosci., 209 (2007), 222-239. doi: 10.1016/j.mbs.2006.08.018.

[25]

W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Biol. Dyn., 3 (2008), 699-717. doi: 10.1007/s10884-008-9111-8.

[26]

Q. Zhu, Y. T. Hao, J. Q. Ma , S. C. Yu and Y. Wang, Surveillance of Hand, Foot, and Mouth Disease in Mainland China (2008-2009), Biomed. Environ. Sci., 4 (2011), 349-356.

[27]

Y. Zhang, X. J. Tan, H. Y. Wang, D. M. Yan, S. L. Zhu, D. Y. Wang, F. Ji, X. J. Wang, Y. J. Gao, L. Chen, H. Q. An, D. X. Li, S. W. Wang, A. Q. Xu, Z. J. Wang and W. B. Xu, An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China, J. Clin. Virol., 44 (2009), 262-267.

[28]

J. Zhang, Z. Jin, G.-Q. Sun, X.-D. Sun and S. Ruan, Modeling seasonal rabies epidemics in China, Bull. Math. Biol., 74 (2012), 1226-1251. doi: 10.1007/s11538-012-9720-6.

[29]

F. Zhang and X. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516. doi: 10.1016/j.jmaa.2006.01.085.

[1]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[2]

Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166

[3]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[4]

Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170

[5]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[6]

Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3005-3017. doi: 10.3934/dcdsb.2021170

[7]

Gabriela Marinoschi. Identification of transmission rates and reproduction number in a SARS-CoV-2 epidemic model. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022128

[8]

Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations and Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015

[9]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[10]

Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024

[11]

Sabri Bensid, Jesús Ildefonso Díaz. On the exact number of monotone solutions of a simplified Budyko climate model and their different stability. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1033-1047. doi: 10.3934/dcdsb.2019005

[12]

Leonid A. Bunimovich. Dynamical systems and operations research: A basic model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 209-218. doi: 10.3934/dcdsb.2001.1.209

[13]

Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457-470. doi: 10.3934/mbe.2007.4.457

[14]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

[15]

Daniel Vasiliu, Jianjun Paul Tian. Periodic solutions of a model for tumor virotherapy. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1587-1597. doi: 10.3934/dcdss.2011.4.1587

[16]

Dongfeng Zhang, Junxiang Xu. On the reducibility of analytic quasi-periodic systems with Liouvillean basic frequencies. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1417-1445. doi: 10.3934/cpaa.2022024

[17]

Hao Kang, Qimin Huang, Shigui Ruan. Periodic solutions of an age-structured epidemic model with periodic infection rate. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4955-4972. doi: 10.3934/cpaa.2020220

[18]

Tommaso Leonori, Ireneo Peral, Ana Primo, Fernando Soria. Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 6031-6068. doi: 10.3934/dcds.2015.35.6031

[19]

John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291

[20]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (24)

Other articles
by authors

[Back to Top]