• Previous Article
    The impact of an imperfect vaccine and pap cytology screening on the transmission of human papillomavirus and occurrence of associated cervical dysplasia and cancer
  • MBE Home
  • This Issue
  • Next Article
    Saturated treatments and measles resurgence episodes in South Africa: A possible linkage
2013, 10(4): 1159-1171. doi: 10.3934/mbe.2013.10.1159

Modelling seasonal HFMD with the recessive infection in Shandong, China

1. 

Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, China, China, China

2. 

Department of Mathematics, North University of China, School of Mechatronic Engineering, North University of China, Taiyuan, Shanxi 030051, China

Received  March 2012 Revised  February 2013 Published  June 2013

Hand, foot and mouth disease (HFMD) is one of the major public-health problems in China. Based on the HFMD data of the Department of Health of Shandong Province, we propose a dynamic model with periodic transmission rates to investigate the seasonal HFMD. After evaluating the basic reproduction number, we analyze the dynamical behaviors of the model and simulate the HFMD data of Shandong Province. By carrying out the sensitivity analysis of some key parameters, we conclude that the recessive subpopulation plays an important role in the spread of HFMD, and only quarantining the infected is not an effective measure in controlling the disease.
Citation: Yangjun Ma, Maoxing Liu, Qiang Hou, Jinqing Zhao. Modelling seasonal HFMD with the recessive infection in Shandong, China. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1159-1171. doi: 10.3934/mbe.2013.10.1159
References:
[1]

O. N. Bjornstad, B. F. Finkenstadt and B. T. Grenfell, Dynamics of measles epidemics: Estimating scaling of transmission rates using a time series SIR model,, Ecol. Monogr., 72 (2002), 169.   Google Scholar

[2]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality,, J. Math. Biol., 53 (2006), 421.  doi: 10.1007/s00285-006-0015-0.  Google Scholar

[3]

N. Bacaër, Approximation of the basic reproduction number $R_{0}$ for vector-borne diseases with a periodic vector population,, Bull. Math. Biol., 69 (2007), 1067.  doi: 10.1007/s11538-006-9166-9.  Google Scholar

[4]

CDC, "Hand, Foot, and Mouth Disease (HFMD)$-$About Hand, Foot, and Mouth (HFMD),", , ().   Google Scholar

[5]

CDC, Notes from the Field: Severe Hand, Foot, and Mouth Disease Associated with Coxsackievirus A6-Alabama, Connecticut, California, and Nevada, November 2011-February 2012,, , ().   Google Scholar

[6]

S. F. Dowell, Seasonal variation in host susceptibility and cycles of certain infectious diseases,, Emerg. Infect. Dis., 7 (2001), 369.   Google Scholar

[7]

J. Dushoff, J. B. Poltkin, S. A. Levin and D. J. D. Earn, Dynamical resonance can account for seasonality of influenza epidemics,, Proc. Natl. Acad. Sci., 101 (2004), 16915.  doi: 10.1073/pnas.0407293101.  Google Scholar

[8]

Z. Grossman, Oscillatory phenomena in a model of infectious diseases,, Theory. Pop. Biol., 18 (1980), 204.  doi: 10.1016/0040-5809(80)90050-7.  Google Scholar

[9]

J. L. Liu, Threshold dynamics for a HFMD epidemic model with periodic transmission rate,, Nonlinear. Dyn., 64 (2011), 89.  doi: 10.1007/s11071-010-9848-6.  Google Scholar

[10]

M. Y. Liu, W. Liu, J. Luo, Y. Liu, Y. Zhu, H. Berman and J. Wu, Characterization of an Outbreak of Hand, Foot, and Mouth Disease in Nanchang, China in 2010,, PLoS ONE., 6 (2011).  doi: 10.1371/journal.pone.0025287.  Google Scholar

[11]

W. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps.i.seasonal variation in contact rates,, Am. J. Epidemiol., 98 (1973), 453.   Google Scholar

[12]

J. Ma and Z. Ma, Epidemic threshold conditions for seasonally forced SEIR models,, Math. Biosci. Eng., 3 (2006), 161.  doi: 10.3934/mbe.2006.3.161.  Google Scholar

[13]

I. A. Moneim and D. Greenhalgh, Use of a periodic vaccination strategy to control the spread of epidemics with seasonally varying contact rate,, Math. Biosci. Eng., 2 (2005), 591.  doi: 10.3934/mbe.2005.2.591.  Google Scholar

[14]

Z. Ma, Y. Zhou, W. Wang and Z. Jin, "Mathematical Modeling and Studying of Dynamic Models of Infectious Disease,", Science Press, (2004).   Google Scholar

[15]

L. Perko, "Differential Equations and Dynamical System,", Springer-Verlag, (2000).   Google Scholar

[16]

I. Schwartz, Small amplitude, long periodic out breaks in seasonally driven epidemics,, J. Math. Biol., 30 (1992), 473.  doi: 10.1007/BF00160532.  Google Scholar

[17]

I. Schwartz and H. Smith, Infinite subharmonic bifurcation in an SIER epidemic model,, J. Math. Biol., 18 (1983), 233.  doi: 10.1007/BF00276090.  Google Scholar

[18]

, Shandong Statistical Information,, , ().   Google Scholar

[19]

F. C. S. Tiing and J. Labadin, A simple deterministic model for the spread of hand, foot and mouth disease (HFMD) in Sarawak,, in, (2008), 947.  doi: 10.1109/AMS.2008.139.  Google Scholar

[20]

M. Urashima, N. Shindo and N. Okable, Seasonal model of herpangina and hand-foot-mouth disease to simulate annual fluctuations in urban warming in Tokyo,, Jpn. J. Infect. Dis., 56 (2003), 48.   Google Scholar

[21]

WHO, Emerging disease surveillance and response,, , ().   Google Scholar

[22]

D. Wu, C. Ke, W. Li, M. Corina, J. Yan, C. Ma, H. Zen and J.Su, A large outbreak of hand, foot, and mouth disease caused by EV71 and CAV16 in Guangdong, China, 2009,, Arch. Virol., 156 (2011), 945.   Google Scholar

[23]

A. Weber, M. Weber and P. Milligan, Modeling epidemics caused by respiratory syncytial virus (RSV),, Math. Biosci., 172 (2001), 95.  doi: 10.1016/S0025-5564(01)00066-9.  Google Scholar

[24]

L. J.White, J. N.Mandl, M. G. Gomes, A. T. Bodley-Tickell, P. A.Cane, P. Perez-Brena, J. C. Aguilar, M. M. Siqueira, S. A. Portes, S. M. Straliotto, M. Waris, D. J. Nokes and G. F. Medley, Understanding the transmissiondynamics of respiratorysyncytialvirus using multiple time series and nested models,, Math. Biosci., 209 (2007), 222.  doi: 10.1016/j.mbs.2006.08.018.  Google Scholar

[25]

W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, J. Biol. Dyn., 3 (2008), 699.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[26]

Q. Zhu, Y. T. Hao, J. Q. Ma , S. C. Yu and Y. Wang, Surveillance of Hand, Foot, and Mouth Disease in Mainland China (2008-2009),, Biomed. Environ. Sci., 4 (2011), 349.   Google Scholar

[27]

Y. Zhang, X. J. Tan, H. Y. Wang, D. M. Yan, S. L. Zhu, D. Y. Wang, F. Ji, X. J. Wang, Y. J. Gao, L. Chen, H. Q. An, D. X. Li, S. W. Wang, A. Q. Xu, Z. J. Wang and W. B. Xu, An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China,, J. Clin. Virol., 44 (2009), 262.   Google Scholar

[28]

J. Zhang, Z. Jin, G.-Q. Sun, X.-D. Sun and S. Ruan, Modeling seasonal rabies epidemics in China,, Bull. Math. Biol., 74 (2012), 1226.  doi: 10.1007/s11538-012-9720-6.  Google Scholar

[29]

F. Zhang and X. Zhao, A periodic epidemic model in a patchy environment,, J. Math. Anal. Appl., 325 (2007), 496.  doi: 10.1016/j.jmaa.2006.01.085.  Google Scholar

show all references

References:
[1]

O. N. Bjornstad, B. F. Finkenstadt and B. T. Grenfell, Dynamics of measles epidemics: Estimating scaling of transmission rates using a time series SIR model,, Ecol. Monogr., 72 (2002), 169.   Google Scholar

[2]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality,, J. Math. Biol., 53 (2006), 421.  doi: 10.1007/s00285-006-0015-0.  Google Scholar

[3]

N. Bacaër, Approximation of the basic reproduction number $R_{0}$ for vector-borne diseases with a periodic vector population,, Bull. Math. Biol., 69 (2007), 1067.  doi: 10.1007/s11538-006-9166-9.  Google Scholar

[4]

CDC, "Hand, Foot, and Mouth Disease (HFMD)$-$About Hand, Foot, and Mouth (HFMD),", , ().   Google Scholar

[5]

CDC, Notes from the Field: Severe Hand, Foot, and Mouth Disease Associated with Coxsackievirus A6-Alabama, Connecticut, California, and Nevada, November 2011-February 2012,, , ().   Google Scholar

[6]

S. F. Dowell, Seasonal variation in host susceptibility and cycles of certain infectious diseases,, Emerg. Infect. Dis., 7 (2001), 369.   Google Scholar

[7]

J. Dushoff, J. B. Poltkin, S. A. Levin and D. J. D. Earn, Dynamical resonance can account for seasonality of influenza epidemics,, Proc. Natl. Acad. Sci., 101 (2004), 16915.  doi: 10.1073/pnas.0407293101.  Google Scholar

[8]

Z. Grossman, Oscillatory phenomena in a model of infectious diseases,, Theory. Pop. Biol., 18 (1980), 204.  doi: 10.1016/0040-5809(80)90050-7.  Google Scholar

[9]

J. L. Liu, Threshold dynamics for a HFMD epidemic model with periodic transmission rate,, Nonlinear. Dyn., 64 (2011), 89.  doi: 10.1007/s11071-010-9848-6.  Google Scholar

[10]

M. Y. Liu, W. Liu, J. Luo, Y. Liu, Y. Zhu, H. Berman and J. Wu, Characterization of an Outbreak of Hand, Foot, and Mouth Disease in Nanchang, China in 2010,, PLoS ONE., 6 (2011).  doi: 10.1371/journal.pone.0025287.  Google Scholar

[11]

W. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps.i.seasonal variation in contact rates,, Am. J. Epidemiol., 98 (1973), 453.   Google Scholar

[12]

J. Ma and Z. Ma, Epidemic threshold conditions for seasonally forced SEIR models,, Math. Biosci. Eng., 3 (2006), 161.  doi: 10.3934/mbe.2006.3.161.  Google Scholar

[13]

I. A. Moneim and D. Greenhalgh, Use of a periodic vaccination strategy to control the spread of epidemics with seasonally varying contact rate,, Math. Biosci. Eng., 2 (2005), 591.  doi: 10.3934/mbe.2005.2.591.  Google Scholar

[14]

Z. Ma, Y. Zhou, W. Wang and Z. Jin, "Mathematical Modeling and Studying of Dynamic Models of Infectious Disease,", Science Press, (2004).   Google Scholar

[15]

L. Perko, "Differential Equations and Dynamical System,", Springer-Verlag, (2000).   Google Scholar

[16]

I. Schwartz, Small amplitude, long periodic out breaks in seasonally driven epidemics,, J. Math. Biol., 30 (1992), 473.  doi: 10.1007/BF00160532.  Google Scholar

[17]

I. Schwartz and H. Smith, Infinite subharmonic bifurcation in an SIER epidemic model,, J. Math. Biol., 18 (1983), 233.  doi: 10.1007/BF00276090.  Google Scholar

[18]

, Shandong Statistical Information,, , ().   Google Scholar

[19]

F. C. S. Tiing and J. Labadin, A simple deterministic model for the spread of hand, foot and mouth disease (HFMD) in Sarawak,, in, (2008), 947.  doi: 10.1109/AMS.2008.139.  Google Scholar

[20]

M. Urashima, N. Shindo and N. Okable, Seasonal model of herpangina and hand-foot-mouth disease to simulate annual fluctuations in urban warming in Tokyo,, Jpn. J. Infect. Dis., 56 (2003), 48.   Google Scholar

[21]

WHO, Emerging disease surveillance and response,, , ().   Google Scholar

[22]

D. Wu, C. Ke, W. Li, M. Corina, J. Yan, C. Ma, H. Zen and J.Su, A large outbreak of hand, foot, and mouth disease caused by EV71 and CAV16 in Guangdong, China, 2009,, Arch. Virol., 156 (2011), 945.   Google Scholar

[23]

A. Weber, M. Weber and P. Milligan, Modeling epidemics caused by respiratory syncytial virus (RSV),, Math. Biosci., 172 (2001), 95.  doi: 10.1016/S0025-5564(01)00066-9.  Google Scholar

[24]

L. J.White, J. N.Mandl, M. G. Gomes, A. T. Bodley-Tickell, P. A.Cane, P. Perez-Brena, J. C. Aguilar, M. M. Siqueira, S. A. Portes, S. M. Straliotto, M. Waris, D. J. Nokes and G. F. Medley, Understanding the transmissiondynamics of respiratorysyncytialvirus using multiple time series and nested models,, Math. Biosci., 209 (2007), 222.  doi: 10.1016/j.mbs.2006.08.018.  Google Scholar

[25]

W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, J. Biol. Dyn., 3 (2008), 699.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[26]

Q. Zhu, Y. T. Hao, J. Q. Ma , S. C. Yu and Y. Wang, Surveillance of Hand, Foot, and Mouth Disease in Mainland China (2008-2009),, Biomed. Environ. Sci., 4 (2011), 349.   Google Scholar

[27]

Y. Zhang, X. J. Tan, H. Y. Wang, D. M. Yan, S. L. Zhu, D. Y. Wang, F. Ji, X. J. Wang, Y. J. Gao, L. Chen, H. Q. An, D. X. Li, S. W. Wang, A. Q. Xu, Z. J. Wang and W. B. Xu, An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China,, J. Clin. Virol., 44 (2009), 262.   Google Scholar

[28]

J. Zhang, Z. Jin, G.-Q. Sun, X.-D. Sun and S. Ruan, Modeling seasonal rabies epidemics in China,, Bull. Math. Biol., 74 (2012), 1226.  doi: 10.1007/s11538-012-9720-6.  Google Scholar

[29]

F. Zhang and X. Zhao, A periodic epidemic model in a patchy environment,, J. Math. Anal. Appl., 325 (2007), 496.  doi: 10.1016/j.jmaa.2006.01.085.  Google Scholar

[1]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[2]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[3]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[4]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[5]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[6]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[9]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[10]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[11]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[12]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[13]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[14]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[15]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[16]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[17]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[18]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[19]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[20]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]