Citation: |
[1] |
T. Alarcón, H. M. Byrne and P. K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment, Journal of Theoretical Biology, 225 (2003), 257-274. |
[2] |
A. Alt-Holland, W. Zhang, A. Margulis and J. Garlick, Microenvironmental control of premalignant disease: the role of intercellular adhesion in the progression of squamous cell carcinoma, Seminars in Cancer Biology, 15 (2005), 84-96. |
[3] |
A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bulletin of Mathematical Biology, 60 (1998), 857-900. |
[4] |
M. Bernaschi and F. Castiglione, Design and implementation of an immune system simulator, Computers in Biology and Medicine, 31 (2001), 303-331. |
[5] |
A. Bertuzzi, A. d'Onofrio, A. Fasano and A. Gandolfi, Regression and regrowth of tumor cords following single dose anticancer treatment, Bulletin of Mathematical Biology, 65 (2003), 903-931. |
[6] |
A. Bertuzzi, A. Fasano, A. Gandolfi and C. Sinisgalli, ATP production and necrosis formation in a tumour spheroid model, Mathematical Modelling of Natural Phenomena, 2 (2007), 30-46. |
[7] |
A. Bertuzzi, A. Fasano, A. Gandolfi and C. Sinisgalli, Necrotic core in EMT6/Ro tumour spheroids: Is it caused by an ATP deficit?, Journal of Theoretical Biology, 262 (2010), 142-150. |
[8] |
B. Blouw, H. Song, T. Tihan, J. Bosze, N. Ferrara, H. Gerber, R. Johnson and G. Bergers, The hypoxic response of tumors is dependent on their microenvironment, Cancer Cell, 4 (2003), 133-146. |
[9] |
R. Bristow and R. Hill, Molecular and cellular basis of radiotherapy, in "The Basic Science of Oncology" (editors, I. Tannock and R. Hill), 295-321. McGraw Hill, New York, (1998). |
[10] |
H. Byrne and M. Chaplain, Modelling the role of cell-cell adhesion in the growth and development of carcinomas, Mathematical and Computational Modelling, 24 (1996), 1-17. |
[11] |
H. Byrne and M. Chaplain, Free boundary value problems associated with the growth and development of multicellular spheroids, European Journal of Applied Mathematics, 8 (1997), 639-658. |
[12] |
R. Cairns and R. Hill, Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma, Cancer Research, 64 March (2004), 2054-2061. |
[13] |
J. Casciari and J. Rasey, Determination of the radiobiologically hypoxic fraction in multicellular spheroids from data on the uptake of [3H]fluoromisonidazole, Radiat Res., 141 (1995), 28-36. |
[14] |
J. Casciari, S. Sotirchos and R. Sutherland, Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH, Journal of Cellular Physiology, 151 (1992), 386-394. |
[15] |
M. Chaplain and A. Matzavinos, Mathematical modelling of spatio-temporal phenomena in tumour immunology, Lect. Notes Math., 1872 (2006), 131-183. |
[16] |
V. Cristini, J. Lowengrub and Q. Nie, Nonlinear simulation of tumor growth, J Math Biol., 46 (2003), 191-224. |
[17] |
L. de Pillis, W. Gu and A. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling applications and biological interpretations, Journal of Theoretical Biology, 238 September (2005), 841-862. |
[18] |
L. de Pillis, D. Mallet and A. Radunskaya, Spatial tumor-immune modeling, Journal of Computational and Mathematical Models in Medicine, 7 June-September (2006), 159-276. |
[19] |
L. de Pillis and A. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: An optimal control approach, J Theor Med., 3 (2001), 79-100. |
[20] |
L. de Pillis and A. Radunskaya, The dynamics of an optimally controlled tumor model: A case study, Math Comput Model. (Special Issues), 37 (2003), 1221-1244. |
[21] |
L. de Pillis and A. Radunskaya, Immune response to tumor invasion, in "Computational Fluid and Solid Mechanics" (editor, K. Bathe), M.I.T., 2 (2003), 1661-1668. |
[22] |
L. de Pillis, A. Radunskaya and C. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Research, 65 September (2005), 7950-7958. |
[23] |
M. Dewhirst, Concepts of oxygen transport at the microcirculatory level, Semin Radiat Oncol., 8 (1998), 143-50. |
[24] |
S. Dormann and A. Deutsch, Modeling of self-organized avascular tumor growth with a hybrid cellular automaton, In Silico Biology, 2 (2002), 0035. |
[25] |
A. dos Reis, J. Mombach, M. Walter and de Avila L. F., The interplay between cell adhesion and environment rigidity in the morphology of tumors, Phyisca A-Statistical Mechanics and its Applications, 322 (2003), 546-554. |
[26] |
R. D'Souza, N. Margolus and M. Smith, Dimension-splitting for simplifying diffusion in lattice-gas models, Journal of Statistical Physics, 107 (2002). |
[27] |
S. C. Ferreira, M. L. Martins and M. J. Vilela, Reaction-diffusion model for the growth of avascular tumor, Phys Rev E, 65 (2002). |
[28] |
P. Gassmann, J. Haier and G. Nicolson, Cell adhesion and invasion during secondary tumor formation, Cancer Growth and Progression, 3 (2004). |
[29] |
R. Gatenby and J. Gillies, Why do cancers have high aerobic glycolysis?, Nature Reviews Cancer, 4 (2004), 891-899. |
[30] |
I. Georgoudas, G. Sirakoulis and I. Andreadis, An intelligent cellular automaton model for crowd evacuation in fire spreading conditions, in "19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007)" 1 36-43. IEEE Computer Society, (2007). |
[31] |
S. Gobron and N. Chiba, Visual simulation of crack pattern based on 3D surface cellular automaton, in "Seventh International Conference on Parallel and Distributed Systems Workshops (ICPADS'00 Workshops)", pages 181-187. IEEE Computer Society, (2000). |
[32] |
M. Gryczynskia, J. Kobos and W. Pietruszewska, Intratumoral microvessels density and morphometric study of angiogenesis as prognostic factor in laryngeal cancer, International Congress Series, 1240 (2003), 1113-1118. |
[33] |
M. Guppy, P. Leedman, X. Zu and V. Russel, Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells, Biochem. J., 364 (2002), 309-315. |
[34] |
J. Haier and G. Nicolson, Role of tumor cell adhesion as an important factor in formation of distant metastases, Diseases Colon Rect., 44 (2001), 876-884. |
[35] |
A. Harris, "Hypoxia - A Key Regulatory Factor in Tumour Growth," 2002. |
[36] |
G. Helmlinger, A. Sckell, M. Dellian, N. Forbes and R. Jain, Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism, Clinical Cancer Research, 8 (2002), 1284-1291. |
[37] |
M. Hockel and P. Vaupel, "Tumor Hypoxia: Definitions and Current Clinical, Biologic, and Molecular Aspects," 2001. |
[38] |
M. Hystad and E. Rofstad, Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids, Int J Cancer., 57 (1994), 532-537. |
[39] |
T. L. Jackson, Vascular tumor growth and treatment: Consequenes of polyclonality, competition and dynamic vascular support, J Math Biol., 44 Mar.(2002), 201-226. |
[40] |
S. Kooijman, "Dynamic Energy and Mass Budgets in Biological Systems," Cambridge University Press, Great Britain, 2nd edition, 2000. |
[41] |
M. I. Koukourakis, M. Pitiakoudis, A. Giatromanolaki, A. Tsarouha, A. Polychronidis, E. Sivridis and C. Simopoulos, Oxygen and glucose consumption in gastrointestinal adenocarcinomas: Correlation with markers of hypoxia, acidity and anaerobic glycolysis, Cancer Science, 97 (2006), 1056-1060. |
[42] |
M. Kunz, S. Moeller, D. Koczan, P. Lorenz, R. Wenger, M. Glocker, H. Thiesen, G. Gross and S. Ibrahim, Mechanisms of hypoxic gene regulation of angiogenesis factor Cyr61 in melanoma cells, Journal of Biological Chemistry, 278 (2003), 45651-45660. |
[43] |
M. Li, Z. Ru and J. He, Cellular automata to simulate rock failure, in "16th International Conference on Artificial Reality and Telexistence-Workshops (ICAT'06)", 110-114. IEEE Computer Society, (2006). |
[44] |
P. Macklin, S. McDougall, A. Anderson, M. Chaplain, V. Cristini and J. Lowengrub, Multiscale modelling and nonlinear simulation of vascular tumour growth, Journal of Mathematical Biology, 58 (2009), 765-798.doi: 10.1007/s00285-008-0216-9. |
[45] |
D. Mallet and L. de Pillis, A cellular automata model of tumor-immune system interactions, Journal of Theoretical Biology, 239 (2006), 334-350. |
[46] |
C. Menon, G. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. Culver, J. Pingpank, C. Sehgal, A. Yodh, D. Buerk and D. Fraker, An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model, Cancer Research, 63 (2003), 7232-7240. |
[47] |
B. Mueller, R. Reisfeld, T. Edgington and W. Ruf, Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis, Proc. Natl. Acad. Sci. USA, 89 December (1992), 11832-11836. |
[48] |
D. Nelson and M. Cox, "Lehninger Principles of Biochemistry," W. H. Freeman and Co., 4th edition, 2004. |
[49] |
N. Oriuchi, T. Higuchi, T. Ishikita, M. Miyakubo, H. Hanaoka, Y. Iida and K. Endo, Present role and future prospects of positron emission tomography in clinical oncology, Cancer Science, Epub ahead of print, October 2006. |
[50] |
M. Owen, H. Byrne and C. Lewis, Mathematical modelling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites, Journal of Theoretical Biology, 226 (2004), 377-399. |
[51] |
A. Patel, E. Gawlinski, S. Lemieux and R. Gatenby, A cellular automaton model of early tumor growth and invasion: The effects of native tissue vascularity and increased anaerobic tumor metabolism, Journal of Theoretical Biology, 213 (2001), 315-331. |
[52] |
L. Preziosi, "Cancer Modelling and Simulation," Mathematical Biology and Medicine Series. Chapman & Hall/CRC, 2003. |
[53] |
R. Puzone, B. Kohler, P. Seiden and F. Celada, IMMSIM, a flexible model for in machina experiments on immune system responses, Future Generation Computer Systems, 18 (2002), 961-972. |
[54] |
A. Radunskaya and M. Villasana, A delay differential equation model for tumor growth, J. Math.Biol., 47 (2003), 270-294. |
[55] |
K. A. Rejniak, An immersed boundary framework for modelling the growth of individual cells: An application to the early tumour development, Journal of Theoretical Biology, 247 JUL 7 (2007), 186-204. |
[56] |
K. A. Rejniak and A. R. A. Anderson, Hybrid models of tumor growth, Wiley Interdisciplinary Reviews - Systems Biology and Medicine, 3 Jan-Feb (2011), 115-125. |
[57] |
K. A. Rejniak and L. J. McCawley, Current trends in mathematical modeling of tumor-microenvironment interactions: a survey of tools and applications, Experimental Biology and Medicine, 235 April (2010), 411-423. |
[58] |
E. Rofstad and K. Maseide, Radiobiological and immunohistochemical assessment of hypoxia in human melanoma xenografts: acute and chronic hypoxia in individual tumours, Int J Radiat Biol., 75 (1999), 1377-93. |
[59] |
S. Sanga, H. B. Frieboes, X. Zheng, R. Gatenby, E. L. Bearer and V. Cristini, Predictive oncology: A review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth, NeuroImage, 37 (Supplement 1) (2007), S120 - S134. Proceedings of the International Brain Mapping & Intraoperative Surgical Planning Society Annual Meeting, (2006). |
[60] |
P. Schornack and R. Gillies, Contributions of cell metabolism and $H^+$ diffusion to the acidic pH of tumors, Neoplasia, 5 (2003), 135-145. |
[61] |
T. J. Schulz, R. Thierbach, A. Voigt, G. Drewes, B. Mietzner, P. Steinberg, A. F. H. Pfeiffer and M. Ristow, Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto warburg revisited, J. Biol. Chem., 281 (2006), 977-981. |
[62] |
R. Skoyum, K. Eide, K. Berg and E. Rofstad, Energy metabolism in human melanoma cells under hypoxic and acidic conditions in vitro, Br J Cancer, 76 (1997), 421-428. |
[63] |
K. Smallbone, R. A. Gatenby, R. Gillies, P. K. Maini and D. Gavaghan, Metabolic changes during carcinogenesis: Potential impact on invasiveness, Journal of Theoretical Biology, 244 (2006), 703-713. |
[64] |
K. Smallbone, D. J. Gavaghan, R. A. Gatenby and P. K. Maini, The role of acidity in solid tumour growth and invasion, Journal of Theoretical Biology, 234 (2005), 476-484. |
[65] |
J. Smolle, Cellular automaton simulation of tumour growth - equivocal relationships between simulation parameters and morphologic pattern features, Anal Cell Pathol., 17 (1998), 71-82. |
[66] |
J. Smolle, R. Hofmann-Wellenhof and H. Kerl, Pattern interpretation by cellular automata (pica)-evaluation of tumour cell adhesion in human melanomas, Anal Cell Pathol., 7 (1994), 91-106. |
[67] |
P. Subarsky and R. Hill, The hypoxic tumour microenvironment and metastatic progression, Clinical & Experimental Metastasis, 20 (2003), 237-250. |
[68] |
I. Tufto, H. Lyng and E. K. Forstad, Vascular density in human melanoma xenografts: Relationship to angiogenesis, perfusion and necrosis, Cancer Letters, 123 (1998), 159-165. |
[69] |
S. Turner, Using cell potential energy to model the dynamics of adhesive biological cells, Physical Review E, 71 (2005), pp.12. 041903. |
[70] |
S. Turner, J. Sherratt, K. Painter and N. Savill, From a discrete to a continuous model of biological cell movement, Physical Review E, 69 (2004), 021910. |
[71] |
I. van Leeuwen, C. Zonneveld and S. Kooijman, The embedded tumour: Host physiology is important for the evaluation of tumour growth, British Journal of Cancer, 89 (2003), 2254-2263. |
[72] |
P. Vaupel, O. Thews, D. Kelleher and M. Hoeckel, Current status of knowledge and critical issues in tumor oxygenation. results from 25 years research in tumor pathophysiology, Adv Exp Med Biol., 454 (1998), 591-602. |
[73] |
R. Venkatasubramanian, M. A. Henson and N. S. Forbes, Incorporating energy metabolism into a growth model of multicellular tumor spheroids, Journal of Theoretical Biology, 242 (2006), 440-453. |
[74] |
J. von Neumann, "Theory of Self-Reproducing Automata," University of Illinois Press, 1966. |
[75] |
S. Wise, J. Lowengrubb and V. Cristini, An adaptive multigrid algorithm for simulating solid tumor growth using mixture models, Mathematical and Computer Modelling, 53 January (2011), 1-20.doi: 10.1016/j.mcm.2010.07.007. |
[76] |
X. Zu and M. Guppy, Cancer metabolism: Facts, fantasy, and fiction, Biochemical and Biophysical Research Communications, 313 (2004), 459-465.doi: 10.1016/j.bbrc.2003.11.136. |