2013, 10(5&6): 1265-1279. doi: 10.3934/mbe.2013.10.1265

Life history traits of Sirex Noctilio F. (Hymenoptera: Siricidae) can explain outbreaks independently of environmental factors

1. 

Instituto de Investigación en Energías no Convencionales, INENCO, CONICET, Universidad Nacional de Salta, Av. Bolivia 5150, 4400 Salta,, Argentina

2. 

Grupo de Ecología de Poblaciones de Insectos, INTA EEA Bariloche, Modesta Victoria 1500, 8400 Bariloche, Argentina

3. 

Centro de Estudios Parasitológicos y de Vectores (CEPAVE), Universidad Nacional de La Plata, Calle 2 No. 584, 1900 La Plata, Argentina

Received  September 2012 Revised  April 2013 Published  August 2013

The woodwasp Sirex noctilio is a major pest of pine plantations worldwide. Economically significant damage is however limited to outbreak populations. To understand what determines outbreaks dynamics in this species, we developed an individual based model for a wasp population developing within a pine plantation. We show that outbreaks may be the result of the insect's life history. Specifically we show that limited dispersal may not only increase population persistence but also create the conditions for eruptive dynamics. When the probability of long distance dispersal is greater than zero, but relatively small ($P_{LDD}$= 0.1) large outbreaks are the norm, with all of the suitable trees dead at the end of the simulation. For $P_{LDD}$= 0 (only local dispersal allowed) outbreaks are smaller in size, and in some cases not well defined and spread over longer periods. For $P_{LDD}$= 1 (only long distance dispersal allowed), the frequency of local population extinction (without outbreaks) increases significantly. Aggregated attacks may induce physiological changes in the trees which could allow other wasps to detect them. These changes may in turn trigger an outbreak. In contrast, healthy, vigorous trees are not suitable for wasp oviposition. In our model the density of suitable trees (healthy trees but yet suitable for oviposition) are a key factor determining population persistence before outbreaks. From an applied perspective, our results emphasize the importance of adequate plantation management in preventing woodwasp infestation.
Citation: Juan Pablo Aparicio, Juan Carlos Corley, Jorge Eduardo Rabinovich. Life history traits of Sirex Noctilio F. (Hymenoptera: Siricidae) can explain outbreaks independently of environmental factors. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1265-1279. doi: 10.3934/mbe.2013.10.1265
References:
[1]

A. A. Berryman, "Forest Insects. Principles and Practice of Population Management," Population Ecology, Plenum Press, New York, NY, 1986. Google Scholar

[2]

A. A. Berryman, The theory and classification of outbreaks, in "Insect Outbreaks" (eds. P. Barbosa and J. Schultz), Academic Press, San Diego, CA, 1987. Google Scholar

[3]

O. A. Bruzzone, J. M. Villacide, C. Bernstein and J. C. Corley, Flight variability in the woodwasp Sirex noctilio (Hymenoptera: Siricidae): An analysis of flight data using wavelets, J. Exp. Biol., 212 (2009), 731-737. doi: 10.1242/jeb.022517.  Google Scholar

[4]

N. Capuccino, H. Damman and J. F. Dubuc, Spatial behavior and temporal dynamics of outbreak and nonoutbreak species, in "Population Dynamics. New Approaches and Synthesis" (eds. N. Cappuccino and P. Price), Academic Press, San Diego, (1995), 65-82. doi: 10.1016/B978-012159270-7/50005-1.  Google Scholar

[5]

W. E. Cole and G. D. Amman, Mountain Pine Beetle Dynamics in Lodgepole Pine Forests. Part I: Course of an Infestation, USDA Forest Service, General Technical Report Int-89, 1980. Google Scholar

[6]

J. C. Corley and M. A. Jervis, Forest Pest Management. A global challenge, International Journal of Pest Management, 58 (2012), 193-194. doi: 10.1080/09670874.2012.701782.  Google Scholar

[7]

J. C. Corley, J. M. Villacide and O. A. Bruzzone, Spatial dynamics of woodwasp (Sirex noctilio F., Hymenoptera:Siricidae) attacks within a pine plantation of Patagonia (Argentina), Entomologia Experimentalis et Applicata, 125 (2007), 231-236. Google Scholar

[8]

J. C. Corley and J. M. Villacide, Population dynamics of Sirex noctilio: Influence of diapause, spatial aggregationand flight potential on woodwasp outbreaks and spread, in "The Sirex Woodwasp and its Fungal Symbiont: Research and Management of a Worldwide Invasive Pest" (eds. B. Slippers, et al.), Springer, 2012. Google Scholar

[9]

M. P. Coutts, The mechanism of pathogenicity of Sirex noctilio on Pinus radiata. I. Effects of the symbiotic fungus Amylostereum sp. (Thelophoraceae), Australian Journal of Biological Science, 22 (1969), 915-924. Google Scholar

[10]

M. P. Coutts and J. E. Dolezal, Emplacement of fungal spores by the woodwasp, Sirex noctilio, during oviposition, Forest Science, 15 (1969), 412-416. Google Scholar

[11]

J. Esper, U. Buntgen, D. C. Frank, D. Nievergelt and A. Liebhold, 1200 years of regular outbreaks in alpine insects, Proceedings of the Royal Society B, 274 (2007), 671-679. doi: 10.1098/rspb.2006.0191.  Google Scholar

[12]

D. A. Gansner, D. A. Drake, S. L. Arner, R. R. Hershey and S. L. King, Defoliation potential of gypsy moth, Res. Note NE-354, U. S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, (1993). Google Scholar

[13]

E. R. Hoebeke, D. A. Haugen and R. A. Haack, Sirex noctilio: Discovery of a Palearctic siricid woodwasp in New York, Newsletter of the Michigan Entomological Society, 50 (2005), 24-25. Google Scholar

[14]

A. F. Hunter, Ecology, life history and Phylogeny of outbreak and nonoutbreak species, in "Population dynamics. New approaches and synthesis" (eds. N. Cappuccino and P. Price), Academic Press, San Diego, 1995. doi: 10.1016/B978-012159270-7/50004-X.  Google Scholar

[15]

B. P. Hurley, B. Slippers and M. J. Wingfield, A comparison of control results for the alien invasive woodwasp, Sirex noctilio, in the southern hemisphere, Agricultural and Forest Entomology, 9 (2007), 159-171. doi: 10.1111/j.1461-9563.2007.00340.x.  Google Scholar

[16]

E. T. Iede, S. R. Penteado and J. L. Bisol, Primeiro registro de ataque de Sirex noctilio em Pinus taeda no Brasil, EMBRAPA-CNPF, Circular técnica 20, Colombo, Brazil, (1988). Google Scholar

[17]

J. Koricheva, S. Larsson and E. Haukioja, Insect performance on experimentally stressed woody plants: A meta-analysis, Annual Review of Entomology, 43 (1998), 196-216. doi: 10.1146/annurev.ento.43.1.195.  Google Scholar

[18]

S. Kucherov, The reconstruction on Lymantria dispar outbreaks by dendrochronological methods in the south Urals, in "Forest Insect Guilds: Patterns of Interaction with Host Trees" (eds. Y. Baranchikov, W. Mattson, F. Hain and T. Payne). Gen. Tech. Rep. NE-153, USDA Forest Service, Northeastern Forest Experiment Station, Radnor, PA, (1991), 205-206. Google Scholar

[19]

A. Liebhold, E. Luzader, J. Halverson and G. Elmes, The spatial dynamics of invasions by exotic forest pests, in "Spatial Analysis and Forest Pest Management" (eds. A. M. Liebhold and H. R. Barrett), General Technical Report-Northeastern Forest Experiment Station, USDA Forest Service, (1993), 125-132. Google Scholar

[20]

J. A. Logan, P. V. Bolstad, B. J. Bentz and D. L. Perkins, Assessing the effects of changing climate on Mountain Pine beetle dynamics, in "Interior West Global Change Workshop" (ed. R. W. Tinus), Fort Collins, CO, April 25-27, 1995, Gen. Tech. Rep. RM-GTR-262, U.S. Departament of Agriculture Forest Service Rocky Mountain Forest and Range Experiment Station, (1995), 92-105. Google Scholar

[21]

J. Lubchenco, A. M. Olson, L. B. Brubaker, S. R. Carpenter, M. M. Holland, S. P. Hubbell, S. A. Levin, J. A. Macmahon, P. A. Matson, J. M. Melillo, H. A. Mooney, C. H. Peterson, H. R. Pulliam, L. A. Real, P. J. Regal and P. G. Risser, The Sustainable Biosphere Initiative: An ecological research agenda, Ecology, 72 (1991), 371-412. doi: 10.2307/2937183.  Google Scholar

[22]

D. Ludwig, D. D. Jones and C. S Holling, Qualitative analysis of insect outbreak systems: The spruce budworm and forest, Journal of Animal Ecology, 47 (1978), 315-332. doi: 10.2307/3939.  Google Scholar

[23]

J. L. Madden, Oviposition behavior of the woodwasp Sirex noctilio F., Australian Journal of Zoology, 22 (1974), 341-351. doi: 10.1071/ZO9740341.  Google Scholar

[24]

J. L. Madden, Physiological aspects of host tree favourability for the woodwasp, Sirex noctilio f., Proc. Ecol. Soc. Aust., 3 (1968), 147-149. Google Scholar

[25]

J. L. Madden, Sirex in Australasia, in "Dynamics of Forest Insect Populations: Patterns, Causes and Implications" (ed. A. A. Berryman), Plenum Press, New York, USA, (1988), 407-429. doi: 10.1007/978-1-4899-0789-9_20.  Google Scholar

[26]

M.-A. Moravie, A. C. Davison, D. Pasquier and P.-J. Charmillot, Bayesian forecasting of grape moth emergence, Ecological Modelling, 197 (2006), 478-489. doi: 10.1016/j.ecolmodel.2006.03.030.  Google Scholar

[27]

F. D. Morgan and N. C. Stewart, The effects of Rhyssa persuasoria (L.) on the population of Sirex noctilio (F.), Transaction of the Royal Society of New Zealand, 8 (1966), 31-38. Google Scholar

[28]

R. R. Mason, D. W. Scott, M. D. Loewen and H. G. Paul, Recurrent outbreak of the Douglas-fir tussock moth in the Malheur National Forest: A case history, Gen. Tech. Rep. PNW-GTR-402, Portland, OR, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1998. Google Scholar

[29]

F. G. Neumann and G. Minko, The sirex woodwasp in Australian radiata pine plantations, Australian Forestry, 44 (1981), 46-63. Google Scholar

[30]

R. A. Obedzinski, J. M. Schmid, S. A. Mata, W. K. Olsen and R. R. Kessler, Growth of Ponderosa pine stands in relation to mountain pine beetle susceptibility, Gen. Tech. Rep. RMRS-GTR-28, Fort Collins, CO, U.S. Department of Agriculture, Forest Service Rocky Mountain Research Station, (1999), 13 pp. Google Scholar

[31]

M. Peltonen, A. M. Liebhold, O. N. Bjrnstad and D. W. Williams, Spatial synchrony in forest insect outbreaks: Roles of regional stochasticity and dispersal, Ecology, 83 (2002), 3120-3129. Google Scholar

[32]

G. B. Rawlings and N. M. Wilson, Sirex noctilio as a beneficial and destructive insect to Pinus radiata, New Zealand Journal of Forestry, 6 (1949), 1-11. Google Scholar

[33]

J. D. Reeve, Environmental varibality, migration and persistence in host parasitoid systems, American Naturalist, 32 (1988), 810-836. Google Scholar

[34]

T. Royama, "Analytical Population Dynamics," Chapman & Hall, New York, 1992. Google Scholar

[35]

K. Ryan and B. Hurley, Life History and Biology of Sirex noctilio, in "The Sirex Woodwasp and its Fungal Symbiont: Research and Management of a Worldwide Invasive Pest" (eds. B. Slippers, et al.), Springer, (2012), 15-30. Google Scholar

[36]

A. V. Selikhovkin, D. L. Musolin and T. E. Sergeeva, Defoliating insects: history of outbreaks in the coniferous forests of Russia, in "Proceedings, Population Dynamics, Impacts and Integrated Management of Forest Defoliating Insects," Gen. Tech. Rep. NE-247, U.S. Department of Agriculture, Forest Service Northeastern Research Station, Radnor, PA, (1998), pp. 340. Google Scholar

[37]

A. A. Sharov, Integrating host, natural enemy, and other processes in population models of the pine sawfly, in "Forest Insect Guilds: Patterns of Interaction with Host Trees" (eds. Y. Baranchikov, W. Mattson, F. Hain and T. Payne), Gen. Tech. Rep. NE-153, USDA Forest Service, Northeastern Forest Experiment Station, Radnor, PA, (1991), 187-198. Google Scholar

[38]

A. A. Sharov, Modeling insect dynamics, in "Caring for the Forest: Research in a Changing World" (eds. E. Korpilahti, H. Mukkela and T. Salonen), Congress Report, Vol. II, IUFRO XX World Congress, 6-12 August 1995, Gummerus Printing, Jyvaskyla, Finland, (1996), 293-303. Google Scholar

[39]

J. P. Spradbery and A. A. Kirk, Experimental studies on the responses of European siricid woodwasps to host trees, Annals of Applied Biology, 98 (1981), 179-185. doi: 10.1111/j.1744-7348.1981.tb00751.x.  Google Scholar

[40]

J. P. Spradbery, The oviposition biology of siricid wasps in Europe, Ecological Entomology, 2 (1977), 224-230. Google Scholar

[41]

J. P. Spradbery and A. A. Kirk, Aspects of the ecology of siricid woodwasps (Hymenoptera: Siricidae) in Europe, North Africa and Turkey with special reference to the biological control of Sirex noctilio F. in Australia, Bulletin of Entomological Research, 68 (1978), 341-359. doi: 10.1017/S0007485300009330.  Google Scholar

[42]

K. L. Taylor, Evaluation of insect parasitoids of Sirex noctilio (Hymenoptera: Siricidae) in Tasmania, Oecologia, 32 (1978), 1-10. doi: 10.1007/BF00344686.  Google Scholar

[43]

K. L. Taylor, The Sirex woodwasp: Ecology and control of an introduced forest insect, in "The Ecology of Pests," (eds. R. L. Kitching and R. E. Jones), (1981), 213-242. Google Scholar

[44]

O. Tenow, A. C. Nilssen, B. Holmgren and F. Elverum, An insect (Argyresthia retinella, Lep., Yponeumonidae) outbreack in northern birch forests, released by climatic changes?, Journal of Applied Ecology, 36 (1999), 111-122. Google Scholar

[45]

G. D. Tribe, The woodwasp Sirex noctilio Fabricius (Hymenoptera: Siricidae), a pest of Pinus species, now established in South Africa, African Entomology, 3 (1995), 216-217. Google Scholar

[46]

G. C. Varley and G. R. Gradwell, Population models for the winter moth in "Insect Abundance" (ed. T. R. E. Southwood), Blackwell Scientific Publisher, Oxford, (1968), 132-142. Google Scholar

[47]

J. M. Villacide and J. C. Corley, Ecology of the woodwasp Sirex noctilio: Tackling the challenge of successful pest management, International Journal of Pest Management, 58 (2012), 249-256. Google Scholar

[48]

R. M. Weseloh, Predicting Gypsy moth defoliation using spatially explicit information, in "Population Dynamics, Impacts and Integrated Management of Forest Defoliating Insects," Gen. Tech. Rep. NE-247, U.S. Department of Agriculture, Forest Service Northeastern Research Station, Radnor, PA, (1998), pp. 349. Google Scholar

[49]

J. W. Wilder, I. Christie and J. J. Colbert, Modelling of two-dimensional spatial effects on the spread of forest pests and their management, Ecological Modelling, 82 (1995), 287-298. doi: 10.1016/0304-3800(95)00097-F.  Google Scholar

[50]

Q. B. Zhang and R. I. Alfaro, Spatial synchrony of the two-year cycle budworm outbreaks in Central British Columbia, Canada, Oikos, 102 (2003), 146-154. doi: 10.1034/j.1600-0706.2003.12169.x.  Google Scholar

show all references

References:
[1]

A. A. Berryman, "Forest Insects. Principles and Practice of Population Management," Population Ecology, Plenum Press, New York, NY, 1986. Google Scholar

[2]

A. A. Berryman, The theory and classification of outbreaks, in "Insect Outbreaks" (eds. P. Barbosa and J. Schultz), Academic Press, San Diego, CA, 1987. Google Scholar

[3]

O. A. Bruzzone, J. M. Villacide, C. Bernstein and J. C. Corley, Flight variability in the woodwasp Sirex noctilio (Hymenoptera: Siricidae): An analysis of flight data using wavelets, J. Exp. Biol., 212 (2009), 731-737. doi: 10.1242/jeb.022517.  Google Scholar

[4]

N. Capuccino, H. Damman and J. F. Dubuc, Spatial behavior and temporal dynamics of outbreak and nonoutbreak species, in "Population Dynamics. New Approaches and Synthesis" (eds. N. Cappuccino and P. Price), Academic Press, San Diego, (1995), 65-82. doi: 10.1016/B978-012159270-7/50005-1.  Google Scholar

[5]

W. E. Cole and G. D. Amman, Mountain Pine Beetle Dynamics in Lodgepole Pine Forests. Part I: Course of an Infestation, USDA Forest Service, General Technical Report Int-89, 1980. Google Scholar

[6]

J. C. Corley and M. A. Jervis, Forest Pest Management. A global challenge, International Journal of Pest Management, 58 (2012), 193-194. doi: 10.1080/09670874.2012.701782.  Google Scholar

[7]

J. C. Corley, J. M. Villacide and O. A. Bruzzone, Spatial dynamics of woodwasp (Sirex noctilio F., Hymenoptera:Siricidae) attacks within a pine plantation of Patagonia (Argentina), Entomologia Experimentalis et Applicata, 125 (2007), 231-236. Google Scholar

[8]

J. C. Corley and J. M. Villacide, Population dynamics of Sirex noctilio: Influence of diapause, spatial aggregationand flight potential on woodwasp outbreaks and spread, in "The Sirex Woodwasp and its Fungal Symbiont: Research and Management of a Worldwide Invasive Pest" (eds. B. Slippers, et al.), Springer, 2012. Google Scholar

[9]

M. P. Coutts, The mechanism of pathogenicity of Sirex noctilio on Pinus radiata. I. Effects of the symbiotic fungus Amylostereum sp. (Thelophoraceae), Australian Journal of Biological Science, 22 (1969), 915-924. Google Scholar

[10]

M. P. Coutts and J. E. Dolezal, Emplacement of fungal spores by the woodwasp, Sirex noctilio, during oviposition, Forest Science, 15 (1969), 412-416. Google Scholar

[11]

J. Esper, U. Buntgen, D. C. Frank, D. Nievergelt and A. Liebhold, 1200 years of regular outbreaks in alpine insects, Proceedings of the Royal Society B, 274 (2007), 671-679. doi: 10.1098/rspb.2006.0191.  Google Scholar

[12]

D. A. Gansner, D. A. Drake, S. L. Arner, R. R. Hershey and S. L. King, Defoliation potential of gypsy moth, Res. Note NE-354, U. S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, (1993). Google Scholar

[13]

E. R. Hoebeke, D. A. Haugen and R. A. Haack, Sirex noctilio: Discovery of a Palearctic siricid woodwasp in New York, Newsletter of the Michigan Entomological Society, 50 (2005), 24-25. Google Scholar

[14]

A. F. Hunter, Ecology, life history and Phylogeny of outbreak and nonoutbreak species, in "Population dynamics. New approaches and synthesis" (eds. N. Cappuccino and P. Price), Academic Press, San Diego, 1995. doi: 10.1016/B978-012159270-7/50004-X.  Google Scholar

[15]

B. P. Hurley, B. Slippers and M. J. Wingfield, A comparison of control results for the alien invasive woodwasp, Sirex noctilio, in the southern hemisphere, Agricultural and Forest Entomology, 9 (2007), 159-171. doi: 10.1111/j.1461-9563.2007.00340.x.  Google Scholar

[16]

E. T. Iede, S. R. Penteado and J. L. Bisol, Primeiro registro de ataque de Sirex noctilio em Pinus taeda no Brasil, EMBRAPA-CNPF, Circular técnica 20, Colombo, Brazil, (1988). Google Scholar

[17]

J. Koricheva, S. Larsson and E. Haukioja, Insect performance on experimentally stressed woody plants: A meta-analysis, Annual Review of Entomology, 43 (1998), 196-216. doi: 10.1146/annurev.ento.43.1.195.  Google Scholar

[18]

S. Kucherov, The reconstruction on Lymantria dispar outbreaks by dendrochronological methods in the south Urals, in "Forest Insect Guilds: Patterns of Interaction with Host Trees" (eds. Y. Baranchikov, W. Mattson, F. Hain and T. Payne). Gen. Tech. Rep. NE-153, USDA Forest Service, Northeastern Forest Experiment Station, Radnor, PA, (1991), 205-206. Google Scholar

[19]

A. Liebhold, E. Luzader, J. Halverson and G. Elmes, The spatial dynamics of invasions by exotic forest pests, in "Spatial Analysis and Forest Pest Management" (eds. A. M. Liebhold and H. R. Barrett), General Technical Report-Northeastern Forest Experiment Station, USDA Forest Service, (1993), 125-132. Google Scholar

[20]

J. A. Logan, P. V. Bolstad, B. J. Bentz and D. L. Perkins, Assessing the effects of changing climate on Mountain Pine beetle dynamics, in "Interior West Global Change Workshop" (ed. R. W. Tinus), Fort Collins, CO, April 25-27, 1995, Gen. Tech. Rep. RM-GTR-262, U.S. Departament of Agriculture Forest Service Rocky Mountain Forest and Range Experiment Station, (1995), 92-105. Google Scholar

[21]

J. Lubchenco, A. M. Olson, L. B. Brubaker, S. R. Carpenter, M. M. Holland, S. P. Hubbell, S. A. Levin, J. A. Macmahon, P. A. Matson, J. M. Melillo, H. A. Mooney, C. H. Peterson, H. R. Pulliam, L. A. Real, P. J. Regal and P. G. Risser, The Sustainable Biosphere Initiative: An ecological research agenda, Ecology, 72 (1991), 371-412. doi: 10.2307/2937183.  Google Scholar

[22]

D. Ludwig, D. D. Jones and C. S Holling, Qualitative analysis of insect outbreak systems: The spruce budworm and forest, Journal of Animal Ecology, 47 (1978), 315-332. doi: 10.2307/3939.  Google Scholar

[23]

J. L. Madden, Oviposition behavior of the woodwasp Sirex noctilio F., Australian Journal of Zoology, 22 (1974), 341-351. doi: 10.1071/ZO9740341.  Google Scholar

[24]

J. L. Madden, Physiological aspects of host tree favourability for the woodwasp, Sirex noctilio f., Proc. Ecol. Soc. Aust., 3 (1968), 147-149. Google Scholar

[25]

J. L. Madden, Sirex in Australasia, in "Dynamics of Forest Insect Populations: Patterns, Causes and Implications" (ed. A. A. Berryman), Plenum Press, New York, USA, (1988), 407-429. doi: 10.1007/978-1-4899-0789-9_20.  Google Scholar

[26]

M.-A. Moravie, A. C. Davison, D. Pasquier and P.-J. Charmillot, Bayesian forecasting of grape moth emergence, Ecological Modelling, 197 (2006), 478-489. doi: 10.1016/j.ecolmodel.2006.03.030.  Google Scholar

[27]

F. D. Morgan and N. C. Stewart, The effects of Rhyssa persuasoria (L.) on the population of Sirex noctilio (F.), Transaction of the Royal Society of New Zealand, 8 (1966), 31-38. Google Scholar

[28]

R. R. Mason, D. W. Scott, M. D. Loewen and H. G. Paul, Recurrent outbreak of the Douglas-fir tussock moth in the Malheur National Forest: A case history, Gen. Tech. Rep. PNW-GTR-402, Portland, OR, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1998. Google Scholar

[29]

F. G. Neumann and G. Minko, The sirex woodwasp in Australian radiata pine plantations, Australian Forestry, 44 (1981), 46-63. Google Scholar

[30]

R. A. Obedzinski, J. M. Schmid, S. A. Mata, W. K. Olsen and R. R. Kessler, Growth of Ponderosa pine stands in relation to mountain pine beetle susceptibility, Gen. Tech. Rep. RMRS-GTR-28, Fort Collins, CO, U.S. Department of Agriculture, Forest Service Rocky Mountain Research Station, (1999), 13 pp. Google Scholar

[31]

M. Peltonen, A. M. Liebhold, O. N. Bjrnstad and D. W. Williams, Spatial synchrony in forest insect outbreaks: Roles of regional stochasticity and dispersal, Ecology, 83 (2002), 3120-3129. Google Scholar

[32]

G. B. Rawlings and N. M. Wilson, Sirex noctilio as a beneficial and destructive insect to Pinus radiata, New Zealand Journal of Forestry, 6 (1949), 1-11. Google Scholar

[33]

J. D. Reeve, Environmental varibality, migration and persistence in host parasitoid systems, American Naturalist, 32 (1988), 810-836. Google Scholar

[34]

T. Royama, "Analytical Population Dynamics," Chapman & Hall, New York, 1992. Google Scholar

[35]

K. Ryan and B. Hurley, Life History and Biology of Sirex noctilio, in "The Sirex Woodwasp and its Fungal Symbiont: Research and Management of a Worldwide Invasive Pest" (eds. B. Slippers, et al.), Springer, (2012), 15-30. Google Scholar

[36]

A. V. Selikhovkin, D. L. Musolin and T. E. Sergeeva, Defoliating insects: history of outbreaks in the coniferous forests of Russia, in "Proceedings, Population Dynamics, Impacts and Integrated Management of Forest Defoliating Insects," Gen. Tech. Rep. NE-247, U.S. Department of Agriculture, Forest Service Northeastern Research Station, Radnor, PA, (1998), pp. 340. Google Scholar

[37]

A. A. Sharov, Integrating host, natural enemy, and other processes in population models of the pine sawfly, in "Forest Insect Guilds: Patterns of Interaction with Host Trees" (eds. Y. Baranchikov, W. Mattson, F. Hain and T. Payne), Gen. Tech. Rep. NE-153, USDA Forest Service, Northeastern Forest Experiment Station, Radnor, PA, (1991), 187-198. Google Scholar

[38]

A. A. Sharov, Modeling insect dynamics, in "Caring for the Forest: Research in a Changing World" (eds. E. Korpilahti, H. Mukkela and T. Salonen), Congress Report, Vol. II, IUFRO XX World Congress, 6-12 August 1995, Gummerus Printing, Jyvaskyla, Finland, (1996), 293-303. Google Scholar

[39]

J. P. Spradbery and A. A. Kirk, Experimental studies on the responses of European siricid woodwasps to host trees, Annals of Applied Biology, 98 (1981), 179-185. doi: 10.1111/j.1744-7348.1981.tb00751.x.  Google Scholar

[40]

J. P. Spradbery, The oviposition biology of siricid wasps in Europe, Ecological Entomology, 2 (1977), 224-230. Google Scholar

[41]

J. P. Spradbery and A. A. Kirk, Aspects of the ecology of siricid woodwasps (Hymenoptera: Siricidae) in Europe, North Africa and Turkey with special reference to the biological control of Sirex noctilio F. in Australia, Bulletin of Entomological Research, 68 (1978), 341-359. doi: 10.1017/S0007485300009330.  Google Scholar

[42]

K. L. Taylor, Evaluation of insect parasitoids of Sirex noctilio (Hymenoptera: Siricidae) in Tasmania, Oecologia, 32 (1978), 1-10. doi: 10.1007/BF00344686.  Google Scholar

[43]

K. L. Taylor, The Sirex woodwasp: Ecology and control of an introduced forest insect, in "The Ecology of Pests," (eds. R. L. Kitching and R. E. Jones), (1981), 213-242. Google Scholar

[44]

O. Tenow, A. C. Nilssen, B. Holmgren and F. Elverum, An insect (Argyresthia retinella, Lep., Yponeumonidae) outbreack in northern birch forests, released by climatic changes?, Journal of Applied Ecology, 36 (1999), 111-122. Google Scholar

[45]

G. D. Tribe, The woodwasp Sirex noctilio Fabricius (Hymenoptera: Siricidae), a pest of Pinus species, now established in South Africa, African Entomology, 3 (1995), 216-217. Google Scholar

[46]

G. C. Varley and G. R. Gradwell, Population models for the winter moth in "Insect Abundance" (ed. T. R. E. Southwood), Blackwell Scientific Publisher, Oxford, (1968), 132-142. Google Scholar

[47]

J. M. Villacide and J. C. Corley, Ecology of the woodwasp Sirex noctilio: Tackling the challenge of successful pest management, International Journal of Pest Management, 58 (2012), 249-256. Google Scholar

[48]

R. M. Weseloh, Predicting Gypsy moth defoliation using spatially explicit information, in "Population Dynamics, Impacts and Integrated Management of Forest Defoliating Insects," Gen. Tech. Rep. NE-247, U.S. Department of Agriculture, Forest Service Northeastern Research Station, Radnor, PA, (1998), pp. 349. Google Scholar

[49]

J. W. Wilder, I. Christie and J. J. Colbert, Modelling of two-dimensional spatial effects on the spread of forest pests and their management, Ecological Modelling, 82 (1995), 287-298. doi: 10.1016/0304-3800(95)00097-F.  Google Scholar

[50]

Q. B. Zhang and R. I. Alfaro, Spatial synchrony of the two-year cycle budworm outbreaks in Central British Columbia, Canada, Oikos, 102 (2003), 146-154. doi: 10.1034/j.1600-0706.2003.12169.x.  Google Scholar

[1]

Komi Messan, Yun Kang. A two patch prey-predator model with multiple foraging strategies in predator: Applications to insects. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 947-976. doi: 10.3934/dcdsb.2017048

[2]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[3]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[4]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[5]

Vincent Delecroix. Divergent trajectories in the periodic wind-tree model. Journal of Modern Dynamics, 2013, 7 (1) : 1-29. doi: 10.3934/jmd.2013.7.1

[6]

Miaohua Jiang, Qiang Zhang. A coupled map lattice model of tree dispersion. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 83-101. doi: 10.3934/dcdsb.2008.9.83

[7]

Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky. Hybrid discrete-continuous model of invasive bladder cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 729-742. doi: 10.3934/mbe.2013.10.729

[8]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems & Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[9]

Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643

[10]

Dianmo Li, Zhen Zhang, Zufei Ma, Baoyu Xie, Rui Wang. Allee effect and a catastrophe model of population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 629-634. doi: 10.3934/dcdsb.2004.4.629

[11]

Sergei Avdonin, Jonathan Bell. Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph. Inverse Problems & Imaging, 2015, 9 (3) : 645-659. doi: 10.3934/ipi.2015.9.645

[12]

Alberto Bressan, Michele Palladino. Well-posedness of a model for the growth of tree stems and vines. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2047-2064. doi: 10.3934/dcds.2018083

[13]

Lu Li. On a coupled Cahn–Hilliard/Cahn–Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1545-1557. doi: 10.3934/cpaa.2021032

[14]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[15]

Chuang Xu. Strong Allee effect in a stochastic logistic model with mate limitation and stochastic immigration. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2321-2336. doi: 10.3934/dcdsb.2016049

[16]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[17]

Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang. Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1247-1274. doi: 10.3934/mbe.2014.11.1247

[18]

Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172

[19]

Moitri Sen, Malay Banerjee, Yasuhiro Takeuchi. Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 883-904. doi: 10.3934/mbe.2018040

[20]

Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020356

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (8)

[Back to Top]