Citation: |
[1] |
A. Alexanderian, M. K. Gobbert, K. R. Fister, H. Gaff, S. Lenhart and E. Schaefer, An age-structured model for the spread of epidemic cholera: Analysis and simulation, Nonlinear Anal. Real World Appl., 12 (2011), 3483-3498.doi: 10.1016/j.nonrwa.2011.06.009. |
[2] |
F. Brauer, Age-of-infection and the final size relation, Math. Biosci. Eng., 5 (2008), 681-690.doi: 10.3934/mbe.2008.5.681. |
[3] |
F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology," Second edition, Springer, New York, 2012.doi: 10.1007/978-1-4614-1686-9. |
[4] |
F. Brauer, C. Castillo-Chavez and Z. Feng, Discrete epidemic models, Math. Biosc. Eng., 7 (2010), 1-15.doi: 10.3934/mbe.2010.7.1. |
[5] |
F. Brauer, P. van den Driessche and J. Wu, eds., "Mathematical Epidemiology," Lecture Notes in Math., Vol. 1945, Springer, Berlin, 2008.doi: 10.1007/978-3-540-78911-6. |
[6] |
D. L. Chao, M. E. Halloran and I. M. Longini, Jr., Vaccination strategies for epidemic cholera in Haiti with implications for the developing world, Proc. Natl. Acad. Sci. USA, 108 (2011), 7081-7085.doi: 10.1073/pnas.1102149108. |
[7] |
J. M. Cushing, "An Introduction to Structured Population Dynamics," CBMS-NSF Regional Conference Series in Applied Mathematics, 71, SIAM, Philadelphia, 1998.doi: 10.1137/1.9781611970005. |
[8] |
M. Enserink, Haiti's outbreak is latest in cholera's new global assault, Science, 330 (2010), 738-739.doi: 10.1126/science.330.6005.738. |
[9] |
D. M. Hartley, J. G. Morris, Jr. and D. L. Smith, Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidemics? PLOS Med., 3 (2006), 63-69.doi: 10.1371/journal.pmed.0030007. |
[10] |
G. Huang, E. Beretta and Y. Takeuchi, Global stability for epidemic model with constant latency and infectious periods, Math. Biosci. Eng., 9 (2012), 297-312.doi: 10.3934/mbe.2012.9.297. |
[11] |
G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72 (2012), 25-38.doi: 10.1137/110826588. |
[12] |
J. M. Hyman, J. Li and E. A. Stanley, The differential infectivity and staged progression models for the transmission of HIV, Math. Biosci., 155 (1999), 77-109.doi: 10.1016/S0025-5564(98)10057-3. |
[13] |
R. Koenig, International groups battle cholera in Zimbabwe, Science, 323 (2009), 860-861.doi: 10.1126/science.323.5916.860. |
[14] |
J. Ma and D. J. D. Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol., 68 (2006), 679-702.doi: 10.1007/s11538-005-9047-7. |
[15] |
P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109-1140.doi: 10.1080/00036810903208122. |
[16] |
C. C. McCluskey, Delay versus age-of-infection-global stability, Appl. Math. Comput., 217 (2010), 3046-3049. |
[17] |
Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D. Smith and J. Morris, Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe, Proc. Natl. Acad. Sci. USA, 108 (2011), 8767-8772. |
[18] |
Z. Shuai and P. van den Driessche, Global dynamics of cholera models with differential infectivity, Math. Biosci., 234 (2010), 118-126.doi: 10.1016/j.mbs.2011.09.003. |
[19] |
H. L. Smith and H. R. Thieme, "Dynamical Systems and Population Persistence," Graduate Studies in Mathematics, Vol. 118, American Mathematical Society, Providence, 2011. |
[20] |
H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math., 53 (1993), 1447-1479.doi: 10.1137/0153068. |
[21] |
J. H. Tien and D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol., 72 (2010), 1506-1533.doi: 10.1007/s11538-010-9507-6. |
[22] |
A. R. Tuite, J. H. Tien, M. Eisenberg, D. J. D. Earn, J. Ma and D. N. Fisman, Cholera epidemic in Haiti, 2010: Using a transmission model to explain spatial spread of disease and identify optimal control interventions, Ann. Internal Med., 154 (2011), 593-601.doi: 10.7326/0003-4819-154-9-201105030-00334. |
[23] |
G. F. Webb, "Theory of Nonlinear Age-Dependent Population Dynamics," Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, New York, 1985. |
[24] |
World Health Organization, Cholera annual report 2006, Weekly Epidemiological Record, 82 (2007), 273-284. |
[25] |
World Health Organization, Cholera: Global surveillance summary 2008, Weekly Epidemiological Record, 84 (2008), 309-324. |
[26] |
World Health Organization, Cholera fact sheets, August 2011. Available from: http://www.who.int. |