2013, 10(5&6): 1399-1417. doi: 10.3934/mbe.2013.10.1399

Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection

1. 

Department of Mathematics, Shaanxi University of Science & Technology, Xi'an, 710021, China

2. 

Department of Mathematics, Xi'an Jiaotong University, Xi'an, 710049

3. 

Department of Mathematics, Xi’an Jiaotong University, Xi’an, 710049

Received  August 2012 Revised  March 2013 Published  August 2013

A discrete SIS epidemic model with the bilinear incidence depending on the new infection is formulated and studied. The condition for the global stability of the disease free equilibrium is obtained. The existence of the endemic equilibrium and its stability are investigated. More attention is paid to the existence of the saddle-node bifurcation, the flip bifurcation, and the Hopf bifurcation. Sufficient conditions for those bifurcations have been obtained. Numerical simulations are conducted to demonstrate our theoretical results and the complexity of the model.
Citation: Hui Cao, Yicang Zhou, Zhien Ma. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1399-1417. doi: 10.3934/mbe.2013.10.1399
References:
[1]

L. Allen, Some discrete-time SI, SIR, and SIS epidemic models,, Math. Biosci., 124 (1994), 83.  doi: 10.1016/0025-5564(94)90025-6.  Google Scholar

[2]

L. Allen and A. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time,, Math. Biosci., 163 (2000), 1.  doi: 10.1016/S0025-5564(99)00047-4.  Google Scholar

[3]

L. Allen and P. van den Driessche, The basic reproduction number in some discrete-time epidemic models,, J. Differ. Equ. Appl., 14 (2008), 1127.  doi: 10.1080/10236190802332308.  Google Scholar

[4]

R. Arreola, A. Crossa, M. C. Velasco and A. A. Yakubu, Discrete-time SEIS models with exogenous re-infection and dispersal between two patches., Available from: \url{http://mtbi.asu.edu/files/Discrete_time_SEIS_Models_with_Exogenous_Reinfection_and_Dispersal_between_Two_Patches.pdf}., ().   Google Scholar

[5]

W. J. Beyn and J. Lorenz, Center manifolds of dynamical systems under discretization,, Numer. Funct. Anal. Optimiz., 9 (1987), 381.  doi: 10.1080/01630568708816239.  Google Scholar

[6]

H. Cao, Z. Dou, X. Liu, F. Zhang, Y. Zhou and Z. Ma, The impact of antiretroviral therapy on the basic reproductive number of HIV transmission,, Math. Model. Appl., 1 (2012), 33.   Google Scholar

[7]

H. Cao, Y. Xiao and Y. Zhou, The dynamics of a discrete SEIT model with age and infection-age structures,, INT. J. Bio., 5 (2012), 61.  doi: 10.1142/S1793524512600042.  Google Scholar

[8]

H. Cao and Y. Zhou, The discrete age-structured SEIT model with application to tuberculosis transmission in China,, Math. Comput. Model., 55 (2012), 385.  doi: 10.1016/j.mcm.2011.08.017.  Google Scholar

[9]

H. Cao and Y. Zhou, The basic reproduction number of discrete SIR and SEIS models with periodic parameters,, Discrete Cont. Dyn. Sys. B, 18 (2013), 37.   Google Scholar

[10]

H. Cao, Y. Zhou and B. Song, Complex dynamics of discrete SEIS models with simple demography,, Discrete Dyn. Nat. Soc., (2011).  doi: 10.1155/2011/653937.  Google Scholar

[11]

C. Castillo-Chavez and A. A. Yakubu, Discrete-time SIS models with complex dynamics,, Nonliear Anal. TMA, 47 (2001), 4753.  doi: 10.1016/S0362-546X(01)00587-9.  Google Scholar

[12]

C. Castillo-Chavez and A. A. Yakubu, Discrete-time SIS models with simple and complex population dynamics,, in, (2002), 153.   Google Scholar

[13]

C. Celik and O. Duman, Allee effect in a discrete-time predator-prey system,, Chaos Soliton. Fract., 40 (2009), 1956.  doi: 10.1016/j.chaos.2007.09.077.  Google Scholar

[14]

J. E. Franke and A. A. Yakubu, Discrete-time SIS epidemic model in a seasonal environment,, SIAM J. Appl. Math., 66 (2006), 1563.  doi: 10.1137/050638345.  Google Scholar

[15]

P. A. Gonzalez, R. A. Saenz, B. N. Sanchez, C. Castillo-Chavez and A. A. Yakubu, Dispersal between two patches in a discrete time SEIS model,, MTBI technical Report, (2000).   Google Scholar

[16]

J. M. Grandmonet, Nonlinear difference equations, bifurcations and chaos: An introduction,, Research in Economics, 62 (2008), 120.   Google Scholar

[17]

J. Guckenheimer and P. Holmes, "Nonlinear Oscilations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer, (1983).   Google Scholar

[18]

M. P. Hassell, Density dependence in single-species populations,, J. Anim. Ecol., 44 (1975), 283.  doi: 10.2307/3863.  Google Scholar

[19]

Z. Hu, Z. Teng and H. Jiang, Stability analysis in a class of discrete SIRS epidemic models,, Nonlinear Anal. RWA, 13 (2012), 2017.  doi: 10.1016/j.nonrwa.2011.12.024.  Google Scholar

[20]

Z. Hu, Z. Teng and L. Zhang, Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response,, Nonlinear Anal. RWA, 12 (2011), 2356.  doi: 10.1016/j.nonrwa.2011.02.009.  Google Scholar

[21]

L. Li, G. Sun and Z. Jin, Bifurcation and chaos in an epidemic model with nonlinear incidence rates,, Appl. Math. Comput., 216 (2010), 1226.  doi: 10.1016/j.amc.2010.02.014.  Google Scholar

[22]

X. Li and W. Wang, A discrete epidemic model with stage structure,, Chaos Solution. Fract., 26 (2005), 947.  doi: 10.1016/j.chaos.2005.01.063.  Google Scholar

[23]

R. M. May, Biological population obeying difference equations: Stable points, stable cycles, and chaos,, J. Theor. Biol., 51 (1975), 511.  doi: 10.1016/0022-5193(75)90078-8.  Google Scholar

[24]

R. M. May, Deterministic models with chaotic dynamics,, Nature, 256 (1975), 165.   Google Scholar

[25]

R. M. May, Simple mathematical models with very complicated dynamics,, Nature, 261 (1976), 459.   Google Scholar

[26]

H. R. Thieme, Covergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755.  doi: 10.1007/BF00173267.  Google Scholar

[27]

X. Q. Zhao, Asymptotic behavior for asymptotically periodic semiflows with applications,, Comm. Appl. Nonl. Anal., 3 (1996), 43.   Google Scholar

[28]

Y. Zhou and H. Cao, Discrete tuberculosis transmission models and their application,, in, 57 (2010), 83.   Google Scholar

[29]

Y. Zhou, K. Khan, Z. Feng and J. Wu, Projection of tuberculosis incidence with increasing immigration trends,, J. Theor. Biol., 254 (2008), 215.  doi: 10.1016/j.jtbi.2008.05.026.  Google Scholar

[30]

Y. Zhou and Z. Ma, Global stability of a class of discrete age-structured SIS models with immigration,, Math. Biosci. Eng., 6 (2009), 409.  doi: 10.3934/mbe.2009.6.409.  Google Scholar

[31]

Y. Zhou, Z. Ma and F. Brauer, A discrete epidemicmodel for SARS transmission and control in China,, Math. Comput. Model., 40 (2004), 1491.  doi: 10.1016/j.mcm.2005.01.007.  Google Scholar

[32]

Y. Zhou and F. Paolo, Dynamics of a discrete age-structured SIS models,, Discrete Cont. Dyn. Sys. B, 4 (2004), 843.  doi: 10.3934/dcdsb.2004.4.841.  Google Scholar

show all references

References:
[1]

L. Allen, Some discrete-time SI, SIR, and SIS epidemic models,, Math. Biosci., 124 (1994), 83.  doi: 10.1016/0025-5564(94)90025-6.  Google Scholar

[2]

L. Allen and A. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time,, Math. Biosci., 163 (2000), 1.  doi: 10.1016/S0025-5564(99)00047-4.  Google Scholar

[3]

L. Allen and P. van den Driessche, The basic reproduction number in some discrete-time epidemic models,, J. Differ. Equ. Appl., 14 (2008), 1127.  doi: 10.1080/10236190802332308.  Google Scholar

[4]

R. Arreola, A. Crossa, M. C. Velasco and A. A. Yakubu, Discrete-time SEIS models with exogenous re-infection and dispersal between two patches., Available from: \url{http://mtbi.asu.edu/files/Discrete_time_SEIS_Models_with_Exogenous_Reinfection_and_Dispersal_between_Two_Patches.pdf}., ().   Google Scholar

[5]

W. J. Beyn and J. Lorenz, Center manifolds of dynamical systems under discretization,, Numer. Funct. Anal. Optimiz., 9 (1987), 381.  doi: 10.1080/01630568708816239.  Google Scholar

[6]

H. Cao, Z. Dou, X. Liu, F. Zhang, Y. Zhou and Z. Ma, The impact of antiretroviral therapy on the basic reproductive number of HIV transmission,, Math. Model. Appl., 1 (2012), 33.   Google Scholar

[7]

H. Cao, Y. Xiao and Y. Zhou, The dynamics of a discrete SEIT model with age and infection-age structures,, INT. J. Bio., 5 (2012), 61.  doi: 10.1142/S1793524512600042.  Google Scholar

[8]

H. Cao and Y. Zhou, The discrete age-structured SEIT model with application to tuberculosis transmission in China,, Math. Comput. Model., 55 (2012), 385.  doi: 10.1016/j.mcm.2011.08.017.  Google Scholar

[9]

H. Cao and Y. Zhou, The basic reproduction number of discrete SIR and SEIS models with periodic parameters,, Discrete Cont. Dyn. Sys. B, 18 (2013), 37.   Google Scholar

[10]

H. Cao, Y. Zhou and B. Song, Complex dynamics of discrete SEIS models with simple demography,, Discrete Dyn. Nat. Soc., (2011).  doi: 10.1155/2011/653937.  Google Scholar

[11]

C. Castillo-Chavez and A. A. Yakubu, Discrete-time SIS models with complex dynamics,, Nonliear Anal. TMA, 47 (2001), 4753.  doi: 10.1016/S0362-546X(01)00587-9.  Google Scholar

[12]

C. Castillo-Chavez and A. A. Yakubu, Discrete-time SIS models with simple and complex population dynamics,, in, (2002), 153.   Google Scholar

[13]

C. Celik and O. Duman, Allee effect in a discrete-time predator-prey system,, Chaos Soliton. Fract., 40 (2009), 1956.  doi: 10.1016/j.chaos.2007.09.077.  Google Scholar

[14]

J. E. Franke and A. A. Yakubu, Discrete-time SIS epidemic model in a seasonal environment,, SIAM J. Appl. Math., 66 (2006), 1563.  doi: 10.1137/050638345.  Google Scholar

[15]

P. A. Gonzalez, R. A. Saenz, B. N. Sanchez, C. Castillo-Chavez and A. A. Yakubu, Dispersal between two patches in a discrete time SEIS model,, MTBI technical Report, (2000).   Google Scholar

[16]

J. M. Grandmonet, Nonlinear difference equations, bifurcations and chaos: An introduction,, Research in Economics, 62 (2008), 120.   Google Scholar

[17]

J. Guckenheimer and P. Holmes, "Nonlinear Oscilations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer, (1983).   Google Scholar

[18]

M. P. Hassell, Density dependence in single-species populations,, J. Anim. Ecol., 44 (1975), 283.  doi: 10.2307/3863.  Google Scholar

[19]

Z. Hu, Z. Teng and H. Jiang, Stability analysis in a class of discrete SIRS epidemic models,, Nonlinear Anal. RWA, 13 (2012), 2017.  doi: 10.1016/j.nonrwa.2011.12.024.  Google Scholar

[20]

Z. Hu, Z. Teng and L. Zhang, Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response,, Nonlinear Anal. RWA, 12 (2011), 2356.  doi: 10.1016/j.nonrwa.2011.02.009.  Google Scholar

[21]

L. Li, G. Sun and Z. Jin, Bifurcation and chaos in an epidemic model with nonlinear incidence rates,, Appl. Math. Comput., 216 (2010), 1226.  doi: 10.1016/j.amc.2010.02.014.  Google Scholar

[22]

X. Li and W. Wang, A discrete epidemic model with stage structure,, Chaos Solution. Fract., 26 (2005), 947.  doi: 10.1016/j.chaos.2005.01.063.  Google Scholar

[23]

R. M. May, Biological population obeying difference equations: Stable points, stable cycles, and chaos,, J. Theor. Biol., 51 (1975), 511.  doi: 10.1016/0022-5193(75)90078-8.  Google Scholar

[24]

R. M. May, Deterministic models with chaotic dynamics,, Nature, 256 (1975), 165.   Google Scholar

[25]

R. M. May, Simple mathematical models with very complicated dynamics,, Nature, 261 (1976), 459.   Google Scholar

[26]

H. R. Thieme, Covergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755.  doi: 10.1007/BF00173267.  Google Scholar

[27]

X. Q. Zhao, Asymptotic behavior for asymptotically periodic semiflows with applications,, Comm. Appl. Nonl. Anal., 3 (1996), 43.   Google Scholar

[28]

Y. Zhou and H. Cao, Discrete tuberculosis transmission models and their application,, in, 57 (2010), 83.   Google Scholar

[29]

Y. Zhou, K. Khan, Z. Feng and J. Wu, Projection of tuberculosis incidence with increasing immigration trends,, J. Theor. Biol., 254 (2008), 215.  doi: 10.1016/j.jtbi.2008.05.026.  Google Scholar

[30]

Y. Zhou and Z. Ma, Global stability of a class of discrete age-structured SIS models with immigration,, Math. Biosci. Eng., 6 (2009), 409.  doi: 10.3934/mbe.2009.6.409.  Google Scholar

[31]

Y. Zhou, Z. Ma and F. Brauer, A discrete epidemicmodel for SARS transmission and control in China,, Math. Comput. Model., 40 (2004), 1491.  doi: 10.1016/j.mcm.2005.01.007.  Google Scholar

[32]

Y. Zhou and F. Paolo, Dynamics of a discrete age-structured SIS models,, Discrete Cont. Dyn. Sys. B, 4 (2004), 843.  doi: 10.3934/dcdsb.2004.4.841.  Google Scholar

[1]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[2]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[3]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[4]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[5]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[6]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[7]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[8]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[9]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[10]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[11]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[12]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[13]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[14]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[15]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[16]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[17]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[18]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[19]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[20]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]