2013, 10(5&6): 1399-1417. doi: 10.3934/mbe.2013.10.1399

Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection

1. 

Department of Mathematics, Shaanxi University of Science & Technology, Xi'an, 710021, China

2. 

Department of Mathematics, Xi'an Jiaotong University, Xi'an, 710049

3. 

Department of Mathematics, Xi’an Jiaotong University, Xi’an, 710049

Received  August 2012 Revised  March 2013 Published  August 2013

A discrete SIS epidemic model with the bilinear incidence depending on the new infection is formulated and studied. The condition for the global stability of the disease free equilibrium is obtained. The existence of the endemic equilibrium and its stability are investigated. More attention is paid to the existence of the saddle-node bifurcation, the flip bifurcation, and the Hopf bifurcation. Sufficient conditions for those bifurcations have been obtained. Numerical simulations are conducted to demonstrate our theoretical results and the complexity of the model.
Citation: Hui Cao, Yicang Zhou, Zhien Ma. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1399-1417. doi: 10.3934/mbe.2013.10.1399
References:
[1]

L. Allen, Some discrete-time SI, SIR, and SIS epidemic models, Math. Biosci., 124 (1994), 83-105. doi: 10.1016/0025-5564(94)90025-6.

[2]

L. Allen and A. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time, Math. Biosci., 163 (2000), 1-33. doi: 10.1016/S0025-5564(99)00047-4.

[3]

L. Allen and P. van den Driessche, The basic reproduction number in some discrete-time epidemic models, J. Differ. Equ. Appl., 14 (2008), 1127-1147. doi: 10.1080/10236190802332308.

[4]

R. Arreola, A. Crossa, M. C. Velasco and A. A. Yakubu, Discrete-time SEIS models with exogenous re-infection and dispersal between two patches., Available from: \url{http://mtbi.asu.edu/files/Discrete_time_SEIS_Models_with_Exogenous_Reinfection_and_Dispersal_between_Two_Patches.pdf}., (). 

[5]

W. J. Beyn and J. Lorenz, Center manifolds of dynamical systems under discretization, Numer. Funct. Anal. Optimiz., 9 (1987), 381-414. doi: 10.1080/01630568708816239.

[6]

H. Cao, Z. Dou, X. Liu, F. Zhang, Y. Zhou and Z. Ma, The impact of antiretroviral therapy on the basic reproductive number of HIV transmission, Math. Model. Appl., 1 (2012), 33-37.

[7]

H. Cao, Y. Xiao and Y. Zhou, The dynamics of a discrete SEIT model with age and infection-age structures, INT. J. Bio., 5 (2012), 61-76. doi: 10.1142/S1793524512600042.

[8]

H. Cao and Y. Zhou, The discrete age-structured SEIT model with application to tuberculosis transmission in China, Math. Comput. Model., 55 (2012), 385-395. doi: 10.1016/j.mcm.2011.08.017.

[9]

H. Cao and Y. Zhou, The basic reproduction number of discrete SIR and SEIS models with periodic parameters, Discrete Cont. Dyn. Sys. B, 18 (2013), 37-56.

[10]

H. Cao, Y. Zhou and B. Song, Complex dynamics of discrete SEIS models with simple demography, Discrete Dyn. Nat. Soc., (2011), Art. ID 653937, 21 pp. doi: 10.1155/2011/653937.

[11]

C. Castillo-Chavez and A. A. Yakubu, Discrete-time SIS models with complex dynamics, Nonliear Anal. TMA, 47 (2001), 4753-4762. doi: 10.1016/S0362-546X(01)00587-9.

[12]

C. Castillo-Chavez and A. A. Yakubu, Discrete-time SIS models with simple and complex population dynamics, in "Mathematical Approaches for Emerging and Reemerging Infectious Diseases: A introduction" (eds. C. Castillo-Chavez with S. Blower, P. van den Driessche, D. Kirschner and A. A. Yakubu), Springer-Verlag, New York, (2002), 153-163.

[13]

C. Celik and O. Duman, Allee effect in a discrete-time predator-prey system, Chaos Soliton. Fract., 40 (2009), 1956-1962. doi: 10.1016/j.chaos.2007.09.077.

[14]

J. E. Franke and A. A. Yakubu, Discrete-time SIS epidemic model in a seasonal environment, SIAM J. Appl. Math., 66 (2006), 1563-1587. doi: 10.1137/050638345.

[15]

P. A. Gonzalez, R. A. Saenz, B. N. Sanchez, C. Castillo-Chavez and A. A. Yakubu, Dispersal between two patches in a discrete time SEIS model, MTBI technical Report, 2000.

[16]

J. M. Grandmonet, Nonlinear difference equations, bifurcations and chaos: An introduction, Research in Economics, 62 (2008), 120-177.

[17]

J. Guckenheimer and P. Holmes, "Nonlinear Oscilations, Dynamical Systems, and Bifurcations of Vector Fields," Springer, New York, 1983.

[18]

M. P. Hassell, Density dependence in single-species populations, J. Anim. Ecol., 44 (1975), 283-289. doi: 10.2307/3863.

[19]

Z. Hu, Z. Teng and H. Jiang, Stability analysis in a class of discrete SIRS epidemic models, Nonlinear Anal. RWA, 13 (2012), 2017-2033. doi: 10.1016/j.nonrwa.2011.12.024.

[20]

Z. Hu, Z. Teng and L. Zhang, Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response, Nonlinear Anal. RWA, 12 (2011), 2356-2377. doi: 10.1016/j.nonrwa.2011.02.009.

[21]

L. Li, G. Sun and Z. Jin, Bifurcation and chaos in an epidemic model with nonlinear incidence rates, Appl. Math. Comput., 216 (2010), 1226-1234. doi: 10.1016/j.amc.2010.02.014.

[22]

X. Li and W. Wang, A discrete epidemic model with stage structure, Chaos Solution. Fract., 26 (2005), 947-958. doi: 10.1016/j.chaos.2005.01.063.

[23]

R. M. May, Biological population obeying difference equations: Stable points, stable cycles, and chaos, J. Theor. Biol., 51 (1975), 511-524. doi: 10.1016/0022-5193(75)90078-8.

[24]

R. M. May, Deterministic models with chaotic dynamics, Nature, 256 (1975), 165-166.

[25]

R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467.

[26]

H. R. Thieme, Covergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763. doi: 10.1007/BF00173267.

[27]

X. Q. Zhao, Asymptotic behavior for asymptotically periodic semiflows with applications, Comm. Appl. Nonl. Anal., 3 (1996), 43-66.

[28]

Y. Zhou and H. Cao, Discrete tuberculosis transmission models and their application, in "A Survey of Mathematical Biology, Fields Communications Series" (ed. S. Sivaloganathan), 57, A co-publication of the AMS and Fields Institute, Canada, (2010), 83-112.

[29]

Y. Zhou, K. Khan, Z. Feng and J. Wu, Projection of tuberculosis incidence with increasing immigration trends, J. Theor. Biol., 254 (2008), 215-228. doi: 10.1016/j.jtbi.2008.05.026.

[30]

Y. Zhou and Z. Ma, Global stability of a class of discrete age-structured SIS models with immigration, Math. Biosci. Eng., 6 (2009), 409-425. doi: 10.3934/mbe.2009.6.409.

[31]

Y. Zhou, Z. Ma and F. Brauer, A discrete epidemicmodel for SARS transmission and control in China, Math. Comput. Model., 40 (2004), 1491-1506. doi: 10.1016/j.mcm.2005.01.007.

[32]

Y. Zhou and F. Paolo, Dynamics of a discrete age-structured SIS models, Discrete Cont. Dyn. Sys. B, 4 (2004), 843-852. doi: 10.3934/dcdsb.2004.4.841.

show all references

References:
[1]

L. Allen, Some discrete-time SI, SIR, and SIS epidemic models, Math. Biosci., 124 (1994), 83-105. doi: 10.1016/0025-5564(94)90025-6.

[2]

L. Allen and A. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time, Math. Biosci., 163 (2000), 1-33. doi: 10.1016/S0025-5564(99)00047-4.

[3]

L. Allen and P. van den Driessche, The basic reproduction number in some discrete-time epidemic models, J. Differ. Equ. Appl., 14 (2008), 1127-1147. doi: 10.1080/10236190802332308.

[4]

R. Arreola, A. Crossa, M. C. Velasco and A. A. Yakubu, Discrete-time SEIS models with exogenous re-infection and dispersal between two patches., Available from: \url{http://mtbi.asu.edu/files/Discrete_time_SEIS_Models_with_Exogenous_Reinfection_and_Dispersal_between_Two_Patches.pdf}., (). 

[5]

W. J. Beyn and J. Lorenz, Center manifolds of dynamical systems under discretization, Numer. Funct. Anal. Optimiz., 9 (1987), 381-414. doi: 10.1080/01630568708816239.

[6]

H. Cao, Z. Dou, X. Liu, F. Zhang, Y. Zhou and Z. Ma, The impact of antiretroviral therapy on the basic reproductive number of HIV transmission, Math. Model. Appl., 1 (2012), 33-37.

[7]

H. Cao, Y. Xiao and Y. Zhou, The dynamics of a discrete SEIT model with age and infection-age structures, INT. J. Bio., 5 (2012), 61-76. doi: 10.1142/S1793524512600042.

[8]

H. Cao and Y. Zhou, The discrete age-structured SEIT model with application to tuberculosis transmission in China, Math. Comput. Model., 55 (2012), 385-395. doi: 10.1016/j.mcm.2011.08.017.

[9]

H. Cao and Y. Zhou, The basic reproduction number of discrete SIR and SEIS models with periodic parameters, Discrete Cont. Dyn. Sys. B, 18 (2013), 37-56.

[10]

H. Cao, Y. Zhou and B. Song, Complex dynamics of discrete SEIS models with simple demography, Discrete Dyn. Nat. Soc., (2011), Art. ID 653937, 21 pp. doi: 10.1155/2011/653937.

[11]

C. Castillo-Chavez and A. A. Yakubu, Discrete-time SIS models with complex dynamics, Nonliear Anal. TMA, 47 (2001), 4753-4762. doi: 10.1016/S0362-546X(01)00587-9.

[12]

C. Castillo-Chavez and A. A. Yakubu, Discrete-time SIS models with simple and complex population dynamics, in "Mathematical Approaches for Emerging and Reemerging Infectious Diseases: A introduction" (eds. C. Castillo-Chavez with S. Blower, P. van den Driessche, D. Kirschner and A. A. Yakubu), Springer-Verlag, New York, (2002), 153-163.

[13]

C. Celik and O. Duman, Allee effect in a discrete-time predator-prey system, Chaos Soliton. Fract., 40 (2009), 1956-1962. doi: 10.1016/j.chaos.2007.09.077.

[14]

J. E. Franke and A. A. Yakubu, Discrete-time SIS epidemic model in a seasonal environment, SIAM J. Appl. Math., 66 (2006), 1563-1587. doi: 10.1137/050638345.

[15]

P. A. Gonzalez, R. A. Saenz, B. N. Sanchez, C. Castillo-Chavez and A. A. Yakubu, Dispersal between two patches in a discrete time SEIS model, MTBI technical Report, 2000.

[16]

J. M. Grandmonet, Nonlinear difference equations, bifurcations and chaos: An introduction, Research in Economics, 62 (2008), 120-177.

[17]

J. Guckenheimer and P. Holmes, "Nonlinear Oscilations, Dynamical Systems, and Bifurcations of Vector Fields," Springer, New York, 1983.

[18]

M. P. Hassell, Density dependence in single-species populations, J. Anim. Ecol., 44 (1975), 283-289. doi: 10.2307/3863.

[19]

Z. Hu, Z. Teng and H. Jiang, Stability analysis in a class of discrete SIRS epidemic models, Nonlinear Anal. RWA, 13 (2012), 2017-2033. doi: 10.1016/j.nonrwa.2011.12.024.

[20]

Z. Hu, Z. Teng and L. Zhang, Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response, Nonlinear Anal. RWA, 12 (2011), 2356-2377. doi: 10.1016/j.nonrwa.2011.02.009.

[21]

L. Li, G. Sun and Z. Jin, Bifurcation and chaos in an epidemic model with nonlinear incidence rates, Appl. Math. Comput., 216 (2010), 1226-1234. doi: 10.1016/j.amc.2010.02.014.

[22]

X. Li and W. Wang, A discrete epidemic model with stage structure, Chaos Solution. Fract., 26 (2005), 947-958. doi: 10.1016/j.chaos.2005.01.063.

[23]

R. M. May, Biological population obeying difference equations: Stable points, stable cycles, and chaos, J. Theor. Biol., 51 (1975), 511-524. doi: 10.1016/0022-5193(75)90078-8.

[24]

R. M. May, Deterministic models with chaotic dynamics, Nature, 256 (1975), 165-166.

[25]

R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467.

[26]

H. R. Thieme, Covergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763. doi: 10.1007/BF00173267.

[27]

X. Q. Zhao, Asymptotic behavior for asymptotically periodic semiflows with applications, Comm. Appl. Nonl. Anal., 3 (1996), 43-66.

[28]

Y. Zhou and H. Cao, Discrete tuberculosis transmission models and their application, in "A Survey of Mathematical Biology, Fields Communications Series" (ed. S. Sivaloganathan), 57, A co-publication of the AMS and Fields Institute, Canada, (2010), 83-112.

[29]

Y. Zhou, K. Khan, Z. Feng and J. Wu, Projection of tuberculosis incidence with increasing immigration trends, J. Theor. Biol., 254 (2008), 215-228. doi: 10.1016/j.jtbi.2008.05.026.

[30]

Y. Zhou and Z. Ma, Global stability of a class of discrete age-structured SIS models with immigration, Math. Biosci. Eng., 6 (2009), 409-425. doi: 10.3934/mbe.2009.6.409.

[31]

Y. Zhou, Z. Ma and F. Brauer, A discrete epidemicmodel for SARS transmission and control in China, Math. Comput. Model., 40 (2004), 1491-1506. doi: 10.1016/j.mcm.2005.01.007.

[32]

Y. Zhou and F. Paolo, Dynamics of a discrete age-structured SIS models, Discrete Cont. Dyn. Sys. B, 4 (2004), 843-852. doi: 10.3934/dcdsb.2004.4.841.

[1]

Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419

[2]

Ping Liu, Junping Shi, Yuwen Wang. A double saddle-node bifurcation theorem. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2923-2933. doi: 10.3934/cpaa.2013.12.2923

[3]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[4]

Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233

[5]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[6]

Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022069

[7]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[8]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[9]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[10]

Zhiqin Qiao, Deming Zhu, Qiuying Lu. Bifurcation of a heterodimensional cycle with weak inclination flip. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 1009-1025. doi: 10.3934/dcdsb.2012.17.1009

[11]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[12]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[13]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

[14]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[15]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[16]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[17]

Stephen Pankavich, Nathan Neri, Deborah Shutt. Bistable dynamics and Hopf bifurcation in a refined model of early stage HIV infection. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2867-2893. doi: 10.3934/dcdsb.2020044

[18]

Jixun Chu, Pierre Magal. Hopf bifurcation for a size-structured model with resting phase. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4891-4921. doi: 10.3934/dcds.2013.33.4891

[19]

Jisun Lim, Seongwon Lee, Yangjin Kim. Hopf bifurcation in a model of TGF-$\beta$ in regulation of the Th 17 phenotype. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3575-3602. doi: 10.3934/dcdsb.2016111

[20]

Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]