• Previous Article
    Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases
  • MBE Home
  • This Issue
  • Next Article
    The role of multiple modeling perspectives in students' learning of exponential growth
2013, 10(5&6): 1455-1474. doi: 10.3934/mbe.2013.10.1455

The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile

1. 

Mathematical, Computational & Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Box 872402, Tempe, AZ 85287

2. 

Department of Epidemiology, Ministerio de Salud, Santiago, Chile

3. 

Universidad del Desarrollo, Santiago, Chile, Chile

4. 

School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, United States

5. 

Tulane University, New Orleans, LA, 70118, United States

Received  September 2012 Revised  February 2013 Published  August 2013

We use a stochastic simulation model to explore the effect of reactive intervention strategies during the 2002 dengue outbreak in the small population of Easter Island, Chile. We quantified the effect of interventions on the transmission dynamics and epidemic size as a function of the simulated control intensity levels and the timing of initiation of control interventions. Because no dengue outbreaks had been reported prior to 2002 in Easter Island, the 2002 epidemic provided a unique opportunity to estimate the basic reproduction number $R_0$ during the initial epidemic phase, prior to the start of control interventions. We estimated $R_0$ at $27.2$ ($95 \%$CI: $14.8$, $49.3$). We found that the final epidemic size is highly sensitive to the timing of start of interventions. However, even when the control interventions start several weeks after the epidemic onset, reactive intervention efforts can have a significant impact on the final epidemic size. Our results indicate that the rapid implementation of control interventions can have a significant effect in reducing the epidemic size of dengue epidemics.
Citation: Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455
References:
[1]

X. Aguilera, A. Olea, J. Mora, K. Abarca and J. Segovia, Brote de dengue en Isla de Pascua,, El Vigia (Boletín de Vigilancia en Salud Püblica), 16 (2002), 37. Google Scholar

[2]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans,", Oxford University Press, (1991). doi: 10.1016/0046-8177(90)90224-S. Google Scholar

[3]

F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology,", Springer-Verlag, (2000). doi: 10.1007/978-1-4614-1686-9. Google Scholar

[4]

G. Chowell, B. Cazelles, H. Broutin and C. V. Munayco, The influence of climatic and geographic factors on the timing of dengue epidemics in Peru, 1994-2008,, BMC Infectious Diseases, 11 (2011). doi: 10.1186/1471-2334-11-164. Google Scholar

[5]

G. Chowell, P. Diaz-Duenas, J. C. Miller, P. W. Fenimore, J. M. Hyman and C. Castillo-Chavez, Estimation of the reproduction number of dengue fever from spatial epidemic data,, Mathematical Biosciences, 208 (2007), 571. doi: 10.1016/j.mbs.2006.11.011. Google Scholar

[6]

G. Chowell, C. A. Torre, C. Munyaco-Escate, L. Suarez -Ognio, R. Lopez-Cruz, J. M. Hyman and C. Castillo-Chavez, Spatial and temporal dynamics of dengue fever in Peru: 1994-2006,, Epidemiology and Infection, 8 (2008), 1. doi: 10.1017/S0950268808000290. Google Scholar

[7]

G. Chowell and F. Sanchez, Climate-based descriptive models of dengue fever: The 2002 epidemic in Colima, Mexico,, Journal of Environmental Health, 68 (2006), 40. Google Scholar

[8]

O. Diekmann and J. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,", Wiley Series in Mathematical and Computational Biology, (2000). Google Scholar

[9]

, Dirección Meteorológica de Chile., Available from: , (). Google Scholar

[10]

C. Favier, N. Degallier, M. G. Rosa-Freitas, J. P. Boulanger, J. R. Costa Lima, J. F. Luitgards-Moura, C. E. Menkes, B. Mondet, C. Oliveira, E. T. Weimann and P. Tsouris, Early determination of the reproduction number for vector-borne diseases: The case of dengue in Brazil,, Tropical Medicine and International Health, 11 (2006), 332. doi: 10.1111/j.1365-3156.2006.01560.x. Google Scholar

[11]

N. M. Ferguson, C. A. Donnelly and R. M. Anderson, Transmission dynamics and epidemiology of dengue: Insights from age-stratified sero-prevalence surveys,, Phil. Trans. Roy. Soc. Lond. B, 354 (1999), 757. doi: 10.1098/rstb.1999.0428. Google Scholar

[12]

D. A. Focks, E. Daniels, D. G. Haile and J. E. Keesling, A simulation model of the epidemiology of urban dengue fever: Literature analysis, model development, preliminary validation, and samples of simulation results,, American Journal of Tropical Medicine and Hygiene, 53 (1995), 489. Google Scholar

[13]

D. J. Gubler, Dengue and dengue hemorrhagic fever,, Clinical Microbiology Reviews, 11 (1998), 480. Google Scholar

[14]

L. Gustafsson and M. Sternad, Bringing consistency to simulation of population models-Poisson simulation as a bridge between micro and macro simulation,, Mathematical Biosciences, 209 (2007), 361. doi: 10.1016/j.mbs.2007.02.004. Google Scholar

[15]

S. B. Halstead, Dengue virus-mosquito interactions,, Annu Rev Entomol., 53 (2007), 273. doi: 10.1146/annurev.ento.53.103106.093326. Google Scholar

[16]

Y. H. Hsieh and C. W. Chen, Turning points, reproduction number, and impact of climatological events for multi-wave dengue outbreaks,, Trop. Med. Int. Health., 14 (2009), 628. doi: 10.1111/j.1365-3156.2009.02277.x. Google Scholar

[17]

Y. H. Hsieh and S. Ma, Intervention measures, turning point, and reproduction number for dengue, Singapore, 2005,, American Journal of Tropical Medicine and Hygiene, 80 (2009), 66. Google Scholar

[18]

J. M. Hyman, J. Li and E. A. Stanley, The differential infectivity and staged progression models for the transmission of HIV,, Mathematical Biosciences, 155 (1999), 77. doi: 10.1016/S0025-5564(98)10057-3. Google Scholar

[19]

Instituto Nacional de Estadísticas (INE), Estadísticas Demográficas y Vitales, 2009., Available from: , (). Google Scholar

[20]

J. A. Jacquez, "Compartmental Analysis in Biology and Medicine,", Michigan Thompson-Shore, (1996). Google Scholar

[21]

T. H. Jetten and D. A. Focks, Potential changes in the distribution of dengue transmission under climate warming,, American Journal Tropical Medicine and Hygiene, 57 (1997), 285. Google Scholar

[22]

J. S. Koopman, D. R. Prevots, M. A. Vaca Marin, H. Gomez Dantes, M. L. Zarate Aquino, I. M. Longini, Jr and J. Sepulveda Amor, Determinants and predictors of dengue infection in Mexico., American Journal of Epidemiology, 133 (1991), 1168. Google Scholar

[23]

C. F. Li, T. W. Lim, L. L. Han and R. Fang, Rainfall, abundance of Aedes aegypti and dengue infection in Selangor, Malaysia,, Southeast Asian Journal of Tropical Medicine and Public Health, 16 (1985), 560. Google Scholar

[24]

P. M. Luz, C. T. Codeco, E. Massad and C. J. Struchiner, Uncertainties regarding dengue modeling in Río de Janeiro, Brazil,, Memórias do Instituto Oswaldo Cruz, 98 (2003), 871. doi: 10.1590/S0074-02762003000700002. Google Scholar

[25]

G. MacDonald, "The Epidemiology and Control of Malaria,", Chapter Epidemics, (1957), 45. Google Scholar

[26]

C. A. Marques, O. P. Forattini and E. Massad, The basic reproduction number for dengue fever in São Paulo state, Brazil: 1990-1991 epidemic,, Transactions of the Royal Society of Tropical Medicine and Hygiene, 88 (1994), 58. Google Scholar

[27]

E. Massad, F. A. Coutinho, M. N. Burattini and L. F. Lopez, The risk of yellow fever in a dengue-infested area,, Transactions of the Royal Society of Tropical Medicine and Hygiene, 95 (2001), 370. doi: 10.1016/S0035-9203(01)90184-1. Google Scholar

[28]

D. T. Mourya, P. Yadav and A. C. Mishra, Effect of temperature stress on immature stages and susceptibility of Aedes aegypti mosquitoes to chikungunya virus,, American Journal Tropical Medicine and Hygiene, 70 (2004), 346. Google Scholar

[29]

L. E. Muir and B. H. Kay, Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia,, American Journal of Tropical Medicine and Hygiene, 58 (1998), 277. Google Scholar

[30]

M. Otero, H. G. Solari and N. Schweigmann, A stochastic population dynamics model for Aedes aegypti: Formulation and application to a city with temperate climate,, Bulletin of Mathematical Biology, 68 (2006), 1945. doi: 10.1007/s11538-006-9067-y. Google Scholar

[31]

C. Perret, K. Abarca, J. Ovalle, P. Ferrer, P. Godoy, A. Olea, X. Aguilera and M. Ferrés, Dengue-1 virus isolation during first dengue fever outbreak on Easter Island, Chile,, Emerg Infect Dis., 9 (2003), 1465. doi: 10.3201/eid0911.020788. Google Scholar

[32]

R. Ross, "The Prevention of Malaria,", John Murray, (1910). Google Scholar

[33]

G. W. Schultz, Seasonal abundance of dengue vectors in Manila, Republic of the Philippines,, Southeast Asian Journal of Tropical Medicine and Public Health, 24 (1993), 369. Google Scholar

[34]

D. L. Smith, J. Dushoff and F. E. Mckenzie, The risk of a mosquito-borne infection in a heterogeneous environment,, PLoS Biology, 2 (2004), 1957. Google Scholar

[35]

S. T. Stoddard, A. C. Morrison, G. M. Vazquez-Prokopec, V. Paz Soldan, T. J. Kochel, U. Kitron, J. P. Elder and T. W. Scott, The role of human movement in the transmission of vector-borne pathogens,, PLoS Negl. Trop. Dis., 3 (2009). doi: 10.1371/journal.pntd.0000481. Google Scholar

[36]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[37]

D. W. Vaughn, S. Green, S. Kalayanarooj, B. L. Innis, S. Nimmannitya, S. Suntayakorn, T. P. Endy, B. Raengsakulrach, A. L. Rothman, F. A. Ennis and A. Nisalak, Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity,, Journal of Infectious Diseases, 181 (2000), 2. doi: 10.1086/315215. Google Scholar

[38]

H. J. Wearing, P. Rohani and M. J. Keeling, Appropriate models for the management of infectious diseases,, PLoS Medicine, 2 (2005). doi: 10.1371/journal.pmed.0020174. Google Scholar

[39]

World Health Organization, Dengue and dengue hemorrhagic fever, accessed March 04, 2006., Available from: , (). Google Scholar

[40]

World Health Organization, Clinical diagnosis of dengue, accessed April 04, 2006., Available from: , (): 012. Google Scholar

show all references

References:
[1]

X. Aguilera, A. Olea, J. Mora, K. Abarca and J. Segovia, Brote de dengue en Isla de Pascua,, El Vigia (Boletín de Vigilancia en Salud Püblica), 16 (2002), 37. Google Scholar

[2]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans,", Oxford University Press, (1991). doi: 10.1016/0046-8177(90)90224-S. Google Scholar

[3]

F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology,", Springer-Verlag, (2000). doi: 10.1007/978-1-4614-1686-9. Google Scholar

[4]

G. Chowell, B. Cazelles, H. Broutin and C. V. Munayco, The influence of climatic and geographic factors on the timing of dengue epidemics in Peru, 1994-2008,, BMC Infectious Diseases, 11 (2011). doi: 10.1186/1471-2334-11-164. Google Scholar

[5]

G. Chowell, P. Diaz-Duenas, J. C. Miller, P. W. Fenimore, J. M. Hyman and C. Castillo-Chavez, Estimation of the reproduction number of dengue fever from spatial epidemic data,, Mathematical Biosciences, 208 (2007), 571. doi: 10.1016/j.mbs.2006.11.011. Google Scholar

[6]

G. Chowell, C. A. Torre, C. Munyaco-Escate, L. Suarez -Ognio, R. Lopez-Cruz, J. M. Hyman and C. Castillo-Chavez, Spatial and temporal dynamics of dengue fever in Peru: 1994-2006,, Epidemiology and Infection, 8 (2008), 1. doi: 10.1017/S0950268808000290. Google Scholar

[7]

G. Chowell and F. Sanchez, Climate-based descriptive models of dengue fever: The 2002 epidemic in Colima, Mexico,, Journal of Environmental Health, 68 (2006), 40. Google Scholar

[8]

O. Diekmann and J. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,", Wiley Series in Mathematical and Computational Biology, (2000). Google Scholar

[9]

, Dirección Meteorológica de Chile., Available from: , (). Google Scholar

[10]

C. Favier, N. Degallier, M. G. Rosa-Freitas, J. P. Boulanger, J. R. Costa Lima, J. F. Luitgards-Moura, C. E. Menkes, B. Mondet, C. Oliveira, E. T. Weimann and P. Tsouris, Early determination of the reproduction number for vector-borne diseases: The case of dengue in Brazil,, Tropical Medicine and International Health, 11 (2006), 332. doi: 10.1111/j.1365-3156.2006.01560.x. Google Scholar

[11]

N. M. Ferguson, C. A. Donnelly and R. M. Anderson, Transmission dynamics and epidemiology of dengue: Insights from age-stratified sero-prevalence surveys,, Phil. Trans. Roy. Soc. Lond. B, 354 (1999), 757. doi: 10.1098/rstb.1999.0428. Google Scholar

[12]

D. A. Focks, E. Daniels, D. G. Haile and J. E. Keesling, A simulation model of the epidemiology of urban dengue fever: Literature analysis, model development, preliminary validation, and samples of simulation results,, American Journal of Tropical Medicine and Hygiene, 53 (1995), 489. Google Scholar

[13]

D. J. Gubler, Dengue and dengue hemorrhagic fever,, Clinical Microbiology Reviews, 11 (1998), 480. Google Scholar

[14]

L. Gustafsson and M. Sternad, Bringing consistency to simulation of population models-Poisson simulation as a bridge between micro and macro simulation,, Mathematical Biosciences, 209 (2007), 361. doi: 10.1016/j.mbs.2007.02.004. Google Scholar

[15]

S. B. Halstead, Dengue virus-mosquito interactions,, Annu Rev Entomol., 53 (2007), 273. doi: 10.1146/annurev.ento.53.103106.093326. Google Scholar

[16]

Y. H. Hsieh and C. W. Chen, Turning points, reproduction number, and impact of climatological events for multi-wave dengue outbreaks,, Trop. Med. Int. Health., 14 (2009), 628. doi: 10.1111/j.1365-3156.2009.02277.x. Google Scholar

[17]

Y. H. Hsieh and S. Ma, Intervention measures, turning point, and reproduction number for dengue, Singapore, 2005,, American Journal of Tropical Medicine and Hygiene, 80 (2009), 66. Google Scholar

[18]

J. M. Hyman, J. Li and E. A. Stanley, The differential infectivity and staged progression models for the transmission of HIV,, Mathematical Biosciences, 155 (1999), 77. doi: 10.1016/S0025-5564(98)10057-3. Google Scholar

[19]

Instituto Nacional de Estadísticas (INE), Estadísticas Demográficas y Vitales, 2009., Available from: , (). Google Scholar

[20]

J. A. Jacquez, "Compartmental Analysis in Biology and Medicine,", Michigan Thompson-Shore, (1996). Google Scholar

[21]

T. H. Jetten and D. A. Focks, Potential changes in the distribution of dengue transmission under climate warming,, American Journal Tropical Medicine and Hygiene, 57 (1997), 285. Google Scholar

[22]

J. S. Koopman, D. R. Prevots, M. A. Vaca Marin, H. Gomez Dantes, M. L. Zarate Aquino, I. M. Longini, Jr and J. Sepulveda Amor, Determinants and predictors of dengue infection in Mexico., American Journal of Epidemiology, 133 (1991), 1168. Google Scholar

[23]

C. F. Li, T. W. Lim, L. L. Han and R. Fang, Rainfall, abundance of Aedes aegypti and dengue infection in Selangor, Malaysia,, Southeast Asian Journal of Tropical Medicine and Public Health, 16 (1985), 560. Google Scholar

[24]

P. M. Luz, C. T. Codeco, E. Massad and C. J. Struchiner, Uncertainties regarding dengue modeling in Río de Janeiro, Brazil,, Memórias do Instituto Oswaldo Cruz, 98 (2003), 871. doi: 10.1590/S0074-02762003000700002. Google Scholar

[25]

G. MacDonald, "The Epidemiology and Control of Malaria,", Chapter Epidemics, (1957), 45. Google Scholar

[26]

C. A. Marques, O. P. Forattini and E. Massad, The basic reproduction number for dengue fever in São Paulo state, Brazil: 1990-1991 epidemic,, Transactions of the Royal Society of Tropical Medicine and Hygiene, 88 (1994), 58. Google Scholar

[27]

E. Massad, F. A. Coutinho, M. N. Burattini and L. F. Lopez, The risk of yellow fever in a dengue-infested area,, Transactions of the Royal Society of Tropical Medicine and Hygiene, 95 (2001), 370. doi: 10.1016/S0035-9203(01)90184-1. Google Scholar

[28]

D. T. Mourya, P. Yadav and A. C. Mishra, Effect of temperature stress on immature stages and susceptibility of Aedes aegypti mosquitoes to chikungunya virus,, American Journal Tropical Medicine and Hygiene, 70 (2004), 346. Google Scholar

[29]

L. E. Muir and B. H. Kay, Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia,, American Journal of Tropical Medicine and Hygiene, 58 (1998), 277. Google Scholar

[30]

M. Otero, H. G. Solari and N. Schweigmann, A stochastic population dynamics model for Aedes aegypti: Formulation and application to a city with temperate climate,, Bulletin of Mathematical Biology, 68 (2006), 1945. doi: 10.1007/s11538-006-9067-y. Google Scholar

[31]

C. Perret, K. Abarca, J. Ovalle, P. Ferrer, P. Godoy, A. Olea, X. Aguilera and M. Ferrés, Dengue-1 virus isolation during first dengue fever outbreak on Easter Island, Chile,, Emerg Infect Dis., 9 (2003), 1465. doi: 10.3201/eid0911.020788. Google Scholar

[32]

R. Ross, "The Prevention of Malaria,", John Murray, (1910). Google Scholar

[33]

G. W. Schultz, Seasonal abundance of dengue vectors in Manila, Republic of the Philippines,, Southeast Asian Journal of Tropical Medicine and Public Health, 24 (1993), 369. Google Scholar

[34]

D. L. Smith, J. Dushoff and F. E. Mckenzie, The risk of a mosquito-borne infection in a heterogeneous environment,, PLoS Biology, 2 (2004), 1957. Google Scholar

[35]

S. T. Stoddard, A. C. Morrison, G. M. Vazquez-Prokopec, V. Paz Soldan, T. J. Kochel, U. Kitron, J. P. Elder and T. W. Scott, The role of human movement in the transmission of vector-borne pathogens,, PLoS Negl. Trop. Dis., 3 (2009). doi: 10.1371/journal.pntd.0000481. Google Scholar

[36]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[37]

D. W. Vaughn, S. Green, S. Kalayanarooj, B. L. Innis, S. Nimmannitya, S. Suntayakorn, T. P. Endy, B. Raengsakulrach, A. L. Rothman, F. A. Ennis and A. Nisalak, Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity,, Journal of Infectious Diseases, 181 (2000), 2. doi: 10.1086/315215. Google Scholar

[38]

H. J. Wearing, P. Rohani and M. J. Keeling, Appropriate models for the management of infectious diseases,, PLoS Medicine, 2 (2005). doi: 10.1371/journal.pmed.0020174. Google Scholar

[39]

World Health Organization, Dengue and dengue hemorrhagic fever, accessed March 04, 2006., Available from: , (). Google Scholar

[40]

World Health Organization, Clinical diagnosis of dengue, accessed April 04, 2006., Available from: , (): 012. Google Scholar

[1]

Tzy-Wei Hwang, Feng-Bin Wang. Dynamics of a dengue fever transmission model with crowding effect in human population and spatial variation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 147-161. doi: 10.3934/dcdsb.2013.18.147

[2]

Arti Mishra, Benjamin Ambrosio, Sunita Gakkhar, M. A. Aziz-Alaoui. A network model for control of dengue epidemic using sterile insect technique. Mathematical Biosciences & Engineering, 2018, 15 (2) : 441-460. doi: 10.3934/mbe.2018020

[3]

Min Zhu, Zhigui Lin. Modeling the transmission of dengue fever with limited medical resources and self-protection. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 957-974. doi: 10.3934/dcdsb.2018050

[4]

Zhiting Xu, Yingying Zhao. A reaction-diffusion model of dengue transmission. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2993-3018. doi: 10.3934/dcdsb.2014.19.2993

[5]

Jinping Fang, Guang Lin, Hui Wan. Analysis of a stage-structured dengue model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4045-4061. doi: 10.3934/dcdsb.2018125

[6]

Jing-Jing Xiang, Juan Wang, Li-Ming Cai. Global stability of the dengue disease transmission models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2217-2232. doi: 10.3934/dcdsb.2015.20.2217

[7]

Naveen K. Vaidya, Xianping Li, Feng-Bin Wang. Impact of spatially heterogeneous temperature on the dynamics of dengue epidemics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 321-349. doi: 10.3934/dcdsb.2018099

[8]

E. Almaraz, A. Gómez-Corral. On SIR-models with Markov-modulated events: Length of an outbreak, total size of the epidemic and number of secondary infections. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2153-2176. doi: 10.3934/dcdsb.2018229

[9]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[10]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[11]

Ariel Cintrón-Arias, Carlos Castillo-Chávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks. The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences & Engineering, 2009, 6 (2) : 261-282. doi: 10.3934/mbe.2009.6.261

[12]

Stelian Ion, Gabriela Marinoschi. A self-organizing criticality mathematical model for contamination and epidemic spreading. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 383-405. doi: 10.3934/dcdsb.2017018

[13]

Hisashi Inaba. Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 69-96. doi: 10.3934/dcdsb.2006.6.69

[14]

Svend Christensen, Preben Klarskov Hansen, Guozheng Qi, Jihuai Wang. The mathematical method of studying the reproduction structure of weeds and its application to Bromus sterilis. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 777-788. doi: 10.3934/dcdsb.2004.4.777

[15]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[16]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

[17]

Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457-470. doi: 10.3934/mbe.2007.4.457

[18]

Wan-Tong Li, Guo Lin, Cong Ma, Fei-Ying Yang. Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 467-484. doi: 10.3934/dcdsb.2014.19.467

[19]

Xiao-Qiang Zhao, Wendi Wang. Fisher waves in an epidemic model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1117-1128. doi: 10.3934/dcdsb.2004.4.1117

[20]

Avner Friedman, Chuan Xue. A mathematical model for chronic wounds. Mathematical Biosciences & Engineering, 2011, 8 (2) : 253-261. doi: 10.3934/mbe.2011.8.253

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (0)

[Back to Top]