2013, 10(1): 151-165. doi: 10.3934/mbe.2013.10.151

On optimal and suboptimal treatment strategies for a mathematical model of leukemia

1. 

Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany

2. 

Moscow State University of Railway Engineering, Obraztsova 15, Moscow, 127994, Russian Federation, Russian Federation

Received  March 2012 Revised  August 2012 Published  December 2012

In this work an optimization problem for a leukemia treatment model based on the Gompertzian law of cell growth is considered. The quantities of the leukemic and of the healthy cells at the end of the therapy are chosen as the criterion of the treatment quality. In the case where the number of healthy cells at the end of the therapy is higher than a chosen desired number, an analytical solution of the optimization problem for a wide class of therapy processes is given. If this is not the case, a control strategy called alternative is suggested.
Citation: Elena Fimmel, Yury S. Semenov, Alexander S. Bratus. On optimal and suboptimal treatment strategies for a mathematical model of leukemia. Mathematical Biosciences & Engineering, 2013, 10 (1) : 151-165. doi: 10.3934/mbe.2013.10.151
References:
[1]

E. K. Afenya and D. E. Bentil, Models of acute myeloblastic leukemia and its chemotherapy,, in, (1995).   Google Scholar

[2]

E. K. Afenya, Cancer treatment strategies and mathematical modeling,, in, (1998), 1.   Google Scholar

[3]

E. K. Afenya and C. P. Calderón, Modeling disseminated cancers: A review of mathematical models,, Comm. Theor. Biol., 8 (2003), 225.  doi: 10.1080/08948550302449.  Google Scholar

[4]

E. K. Afenya and C. P. Calderón, A brief look at a normal cell decline and inhibition in acute leukemia,, J. Can. Det. Prev., 20 (1996), 171.   Google Scholar

[5]

E. K. Afenya, Acute leukemia and chemotherapy: a modeling viewpoint,, Math. Biosci., 138 (1996), 79.  doi: 10.1016/S0025-5564(96)00086-7.  Google Scholar

[6]

A. V. Antipov and A. S. Bratus', Mathematical model of optimal chemotherapy strategy with allowance for cell population dynamics in a heterogeneous tumor,, Zh. Vychisl. Mat. Mat. Fiz., 49 (2009), 1907.   Google Scholar

[7]

A. S. Bratus, E. Fimmel, Y. Todorov, Y. S. Semenov and F. Nürnberg, On strategies on a mathematical model for leukemia therapy,, Nonlinear Analysis: Real World Applications, 13 (2012), 1044.  doi: 10.1016/j.nonrwa.2011.02.027.  Google Scholar

[8]

B. D. Clarkson, Acute myelocytic leukemia in adults,, Cancer, 30 (1972), 1572.  doi: 10.1002/1097-0142(197212)30:6<1572::AID-CNCR2820300624>3.0.CO;2-M.  Google Scholar

[9]

B. Djulbegovic and S. Svetina, Mathematical model of acute myeloblastic leukemia: an investigation of a relevant kinetic parameters,, Cell Tissue Kinet., 18 (1985), 307.   Google Scholar

[10]

M. Engelhart, D. Lebiedz and S. Sager, Optimal control for selected cancer chemotherapy ODE models: A view on the potential of optimal schedules and choice of objective function,, Mathematical Biosciences, 229 (2011), 123.  doi: 10.1016/j.mbs.2010.11.007.  Google Scholar

[11]

A. F. Filippov, "Differential Equations with Discontinuous Righthand Sides,", Springer, (1988).   Google Scholar

[12]

K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM Journal on Applied Mathematics, 63 (2003), 1954.  doi: 10.1137/S0036139902413489.  Google Scholar

[13]

K. R. Fister and J. C. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy,, SIAM Journal on Applied Mathematics, 60 (2000), 1059.  doi: 10.1137/S0036139998338509.  Google Scholar

[14]

C. L. Frenzen and J. D. Murray:, A cell kinetics justification for Gompertz equation,, SIAM J. Appl. Math., 46 (1986), 614.  doi: 10.1137/0146042.  Google Scholar

[15]

C. Guiot, P. G. Degiorgis, P. P. Delsanto, P. Gabriele and T. S. Deisboeck, Does tumour growth follow a universal law?,, J. Theor. Biol., 225 (2003), 147.  doi: 10.1016/S0022-5193(03)00221-2.  Google Scholar

[16]

"Handbook of Cancer Models with Applications," (W.-Y. Tan, L. Hanin Eds.), Ser. Math. Biology and Medicine;, World Scientific. Vol. 9, (2008).   Google Scholar

[17]

N. H. G. Holford and L. B. Sheiner, Understanding the dose-effect relationship-clinical application of pharmacokinetic-pharmacodynamic models,, Clin. Pharmacokin, 6 (1981), 429.  doi: 10.2165/00003088-198106060-00002.  Google Scholar

[18]

D. E. Kirk, "Optimal Contol Theory: An Introduction,", Prentice-Hall, (1970).   Google Scholar

[19]

U. Ledzewicz, A. d'Onofrio, H. Maurer and H. Schaettler, On optimal delivery of combination therapy for tumors,, Mathematical Biosciences, 222 (2009), 13.  doi: 10.1016/j.mbs.2009.08.004.  Google Scholar

[20]

U. Ledzewicz and H. Schaettler, Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy,, Mathematical Biosciences, 206 (2007), 320.  doi: 10.1016/j.mbs.2005.03.013.  Google Scholar

[21]

A. S. Matveev and A. V. Savkin, Optimal control regimens: influence of tumours on normal cells and several toxicity constraints,, IMA J. Math. Appl. Med. Biol., 18 (2001), 25.  doi: 10.1093/imammb/18.1.25.  Google Scholar

[22]

L. Norton and R. Simon, The Norton-Simon Hypothesis: designing more effective and less toxic chemotherapeutic regimens,, Nature Clinical Practice, 3 (2006).   Google Scholar

[23]

L. Norton and R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules,, Cancer Treat Rep., 61 (1977), 1307.   Google Scholar

[24]

J. C. Panetta, A mathematical model of breast and ovarian cancer treated with paclitaxel,, Mathematical Biosciences, 146 (1997), 89.  doi: 10.1016/S0025-5564(97)00077-1.  Google Scholar

[25]

S. I. Rubinow and J. L. Lebowitz, A mathematical model of the acute myeloblastic leukemic state in man,, Biophys. J., 16 (1976), 897.  doi: 10.1016/S0006-3495(76)85740-2.  Google Scholar

[26]

F. Schabel, Jr., H. Skipper and W. Wilcox, Experimental evaluation of potential anti-cancer agents. XIII. On the criteria and kinetics associated with curability of experimental leukemia,, Cancer Chemo. Rep., 25 (1964), 1.   Google Scholar

[27]

L. B. Sheiner and N. H. G. Holford, Determination of maximum effect,, Clin. Pharmacology & Therapeutics, 71 (2002).  doi: 10.1067/mcp.2002.122277.  Google Scholar

[28]

G. W. Swan and T. L. Vincent, Optimal control analysis in the chemotherapy of IgG multiple myeloma,, Bull. Math. Biol., 39 (1977), 317.   Google Scholar

[29]

Y. Todorov, E. Fimmel, A. S. Bratus, Y. S. Semenov and F. Nürnberg, An optimal strategy for leukemia therapy: A multi-objective approach,, Russian Journal of Numerical Analysis and Mathematical Modelling, 26 (2011), 589.   Google Scholar

show all references

References:
[1]

E. K. Afenya and D. E. Bentil, Models of acute myeloblastic leukemia and its chemotherapy,, in, (1995).   Google Scholar

[2]

E. K. Afenya, Cancer treatment strategies and mathematical modeling,, in, (1998), 1.   Google Scholar

[3]

E. K. Afenya and C. P. Calderón, Modeling disseminated cancers: A review of mathematical models,, Comm. Theor. Biol., 8 (2003), 225.  doi: 10.1080/08948550302449.  Google Scholar

[4]

E. K. Afenya and C. P. Calderón, A brief look at a normal cell decline and inhibition in acute leukemia,, J. Can. Det. Prev., 20 (1996), 171.   Google Scholar

[5]

E. K. Afenya, Acute leukemia and chemotherapy: a modeling viewpoint,, Math. Biosci., 138 (1996), 79.  doi: 10.1016/S0025-5564(96)00086-7.  Google Scholar

[6]

A. V. Antipov and A. S. Bratus', Mathematical model of optimal chemotherapy strategy with allowance for cell population dynamics in a heterogeneous tumor,, Zh. Vychisl. Mat. Mat. Fiz., 49 (2009), 1907.   Google Scholar

[7]

A. S. Bratus, E. Fimmel, Y. Todorov, Y. S. Semenov and F. Nürnberg, On strategies on a mathematical model for leukemia therapy,, Nonlinear Analysis: Real World Applications, 13 (2012), 1044.  doi: 10.1016/j.nonrwa.2011.02.027.  Google Scholar

[8]

B. D. Clarkson, Acute myelocytic leukemia in adults,, Cancer, 30 (1972), 1572.  doi: 10.1002/1097-0142(197212)30:6<1572::AID-CNCR2820300624>3.0.CO;2-M.  Google Scholar

[9]

B. Djulbegovic and S. Svetina, Mathematical model of acute myeloblastic leukemia: an investigation of a relevant kinetic parameters,, Cell Tissue Kinet., 18 (1985), 307.   Google Scholar

[10]

M. Engelhart, D. Lebiedz and S. Sager, Optimal control for selected cancer chemotherapy ODE models: A view on the potential of optimal schedules and choice of objective function,, Mathematical Biosciences, 229 (2011), 123.  doi: 10.1016/j.mbs.2010.11.007.  Google Scholar

[11]

A. F. Filippov, "Differential Equations with Discontinuous Righthand Sides,", Springer, (1988).   Google Scholar

[12]

K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM Journal on Applied Mathematics, 63 (2003), 1954.  doi: 10.1137/S0036139902413489.  Google Scholar

[13]

K. R. Fister and J. C. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy,, SIAM Journal on Applied Mathematics, 60 (2000), 1059.  doi: 10.1137/S0036139998338509.  Google Scholar

[14]

C. L. Frenzen and J. D. Murray:, A cell kinetics justification for Gompertz equation,, SIAM J. Appl. Math., 46 (1986), 614.  doi: 10.1137/0146042.  Google Scholar

[15]

C. Guiot, P. G. Degiorgis, P. P. Delsanto, P. Gabriele and T. S. Deisboeck, Does tumour growth follow a universal law?,, J. Theor. Biol., 225 (2003), 147.  doi: 10.1016/S0022-5193(03)00221-2.  Google Scholar

[16]

"Handbook of Cancer Models with Applications," (W.-Y. Tan, L. Hanin Eds.), Ser. Math. Biology and Medicine;, World Scientific. Vol. 9, (2008).   Google Scholar

[17]

N. H. G. Holford and L. B. Sheiner, Understanding the dose-effect relationship-clinical application of pharmacokinetic-pharmacodynamic models,, Clin. Pharmacokin, 6 (1981), 429.  doi: 10.2165/00003088-198106060-00002.  Google Scholar

[18]

D. E. Kirk, "Optimal Contol Theory: An Introduction,", Prentice-Hall, (1970).   Google Scholar

[19]

U. Ledzewicz, A. d'Onofrio, H. Maurer and H. Schaettler, On optimal delivery of combination therapy for tumors,, Mathematical Biosciences, 222 (2009), 13.  doi: 10.1016/j.mbs.2009.08.004.  Google Scholar

[20]

U. Ledzewicz and H. Schaettler, Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy,, Mathematical Biosciences, 206 (2007), 320.  doi: 10.1016/j.mbs.2005.03.013.  Google Scholar

[21]

A. S. Matveev and A. V. Savkin, Optimal control regimens: influence of tumours on normal cells and several toxicity constraints,, IMA J. Math. Appl. Med. Biol., 18 (2001), 25.  doi: 10.1093/imammb/18.1.25.  Google Scholar

[22]

L. Norton and R. Simon, The Norton-Simon Hypothesis: designing more effective and less toxic chemotherapeutic regimens,, Nature Clinical Practice, 3 (2006).   Google Scholar

[23]

L. Norton and R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules,, Cancer Treat Rep., 61 (1977), 1307.   Google Scholar

[24]

J. C. Panetta, A mathematical model of breast and ovarian cancer treated with paclitaxel,, Mathematical Biosciences, 146 (1997), 89.  doi: 10.1016/S0025-5564(97)00077-1.  Google Scholar

[25]

S. I. Rubinow and J. L. Lebowitz, A mathematical model of the acute myeloblastic leukemic state in man,, Biophys. J., 16 (1976), 897.  doi: 10.1016/S0006-3495(76)85740-2.  Google Scholar

[26]

F. Schabel, Jr., H. Skipper and W. Wilcox, Experimental evaluation of potential anti-cancer agents. XIII. On the criteria and kinetics associated with curability of experimental leukemia,, Cancer Chemo. Rep., 25 (1964), 1.   Google Scholar

[27]

L. B. Sheiner and N. H. G. Holford, Determination of maximum effect,, Clin. Pharmacology & Therapeutics, 71 (2002).  doi: 10.1067/mcp.2002.122277.  Google Scholar

[28]

G. W. Swan and T. L. Vincent, Optimal control analysis in the chemotherapy of IgG multiple myeloma,, Bull. Math. Biol., 39 (1977), 317.   Google Scholar

[29]

Y. Todorov, E. Fimmel, A. S. Bratus, Y. S. Semenov and F. Nürnberg, An optimal strategy for leukemia therapy: A multi-objective approach,, Russian Journal of Numerical Analysis and Mathematical Modelling, 26 (2011), 589.   Google Scholar

[1]

Adam Glick, Antonio Mastroberardino. Combined therapy for treating solid tumors with chemotherapy and angiogenic inhibitors. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020343

[2]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[5]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[6]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[7]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[8]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[9]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[10]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[11]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

[12]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[13]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[14]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[15]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[16]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[17]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[18]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[19]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[20]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (2)

[Back to Top]