-
Previous Article
A structural model of the VEGF signalling pathway: Emergence of robustness and redundancy properties
- MBE Home
- This Issue
-
Next Article
A multiple time-scale computational model of a tumor and its micro environment
On optimal and suboptimal treatment strategies for a mathematical model of leukemia
1. | Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany |
2. | Moscow State University of Railway Engineering, Obraztsova 15, Moscow, 127994, Russian Federation, Russian Federation |
References:
[1] |
E. K. Afenya and D. E. Bentil, Models of acute myeloblastic leukemia and its chemotherapy, in "Computational Medicine, Public Health, and Biotechnology Part I. World Scientific" New Jersey, (1995), pp. 397. |
[2] |
E. K. Afenya, Cancer treatment strategies and mathematical modeling, in "Mathematical Models in Medical and Health Sciences" (eds. M. A. Horn, G. Simonett and G. F. Webb), Vanderbilt University. Nashville, (1998), 1-8. |
[3] |
E. K. Afenya and C. P. Calderón, Modeling disseminated cancers: A review of mathematical models, Comm. Theor. Biol., 8 (2003), 225-253.
doi: 10.1080/08948550302449. |
[4] |
E. K. Afenya and C. P. Calderón, A brief look at a normal cell decline and inhibition in acute leukemia, J. Can. Det. Prev.,, 20 (1996), 171-179. |
[5] |
E. K. Afenya, Acute leukemia and chemotherapy: a modeling viewpoint, Math. Biosci., 138 (1996), 79-100.
doi: 10.1016/S0025-5564(96)00086-7. |
[6] |
A. V. Antipov and A. S. Bratus', Mathematical model of optimal chemotherapy strategy with allowance for cell population dynamics in a heterogeneous tumor, Zh. Vychisl. Mat. Mat. Fiz., 49 (2009), 1907-1919 |
[7] |
A. S. Bratus, E. Fimmel, Y. Todorov, Y. S. Semenov and F. Nürnberg, On strategies on a mathematical model for leukemia therapy, Nonlinear Analysis: Real World Applications, 13 (2012), 1044-1059.
doi: 10.1016/j.nonrwa.2011.02.027. |
[8] |
B. D. Clarkson, Acute myelocytic leukemia in adults, Cancer, 30 (1972), 1572-1582.
doi: 10.1002/1097-0142(197212)30:6<1572::AID-CNCR2820300624>3.0.CO;2-M. |
[9] |
B. Djulbegovic and S. Svetina, Mathematical model of acute myeloblastic leukemia: an investigation of a relevant kinetic parameters, Cell Tissue Kinet., 18 (1985), 307-319. |
[10] |
M. Engelhart, D. Lebiedz and S. Sager, Optimal control for selected cancer chemotherapy ODE models: A view on the potential of optimal schedules and choice of objective function, Mathematical Biosciences, 229 (2011), 123-134.
doi: 10.1016/j.mbs.2010.11.007. |
[11] |
A. F. Filippov, "Differential Equations with Discontinuous Righthand Sides," Springer, 1988. |
[12] |
K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies, SIAM Journal on Applied Mathematics, 63 (2003), 1954-1971.
doi: 10.1137/S0036139902413489. |
[13] |
K. R. Fister and J. C. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy, SIAM Journal on Applied Mathematics, 60 (2000), 1059-1072.
doi: 10.1137/S0036139998338509. |
[14] |
C. L. Frenzen and J. D. Murray:, A cell kinetics justification for Gompertz equation, SIAM J. Appl. Math., 46 (1986), 614-624.
doi: 10.1137/0146042. |
[15] |
C. Guiot, P. G. Degiorgis, P. P. Delsanto, P. Gabriele and T. S. Deisboeck, Does tumour growth follow a universal law?, J. Theor. Biol., 225 (2003), 147-151.
doi: 10.1016/S0022-5193(03)00221-2. |
[16] |
"Handbook of Cancer Models with Applications," (W.-Y. Tan, L. Hanin Eds.), Ser. Math. Biology and Medicine; World Scientific. Vol. 9, 2008. |
[17] |
N. H. G. Holford and L. B. Sheiner, Understanding the dose-effect relationship-clinical application of pharmacokinetic-pharmacodynamic models, Clin. Pharmacokin, 6 (1981), 429-453.
doi: 10.2165/00003088-198106060-00002. |
[18] |
D. E. Kirk, "Optimal Contol Theory: An Introduction," Prentice-Hall, 1970 |
[19] |
U. Ledzewicz, A. d'Onofrio, H. Maurer and H. Schaettler, On optimal delivery of combination therapy for tumors, Mathematical Biosciences, 222 (2009), 13-26.
doi: 10.1016/j.mbs.2009.08.004. |
[20] |
U. Ledzewicz and H. Schaettler, Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy, Mathematical Biosciences, 206 (2007), 320-342.
doi: 10.1016/j.mbs.2005.03.013. |
[21] |
A. S. Matveev and A. V. Savkin, Optimal control regimens: influence of tumours on normal cells and several toxicity constraints, IMA J. Math. Appl. Med. Biol., 18 (2001), 25-40.
doi: 10.1093/imammb/18.1.25. |
[22] |
L. Norton and R. Simon, The Norton-Simon Hypothesis: designing more effective and less toxic chemotherapeutic regimens, Nature Clinical Practice, 3 Nr. 8, (2006). |
[23] |
L. Norton and R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules, Cancer Treat Rep., 61(1977) Oct, 1307-1317. PubMed PMID: 589597. |
[24] |
J. C. Panetta, A mathematical model of breast and ovarian cancer treated with paclitaxel, Mathematical Biosciences, 146 (1997), 89-113.
doi: 10.1016/S0025-5564(97)00077-1. |
[25] |
S. I. Rubinow and J. L. Lebowitz, A mathematical model of the acute myeloblastic leukemic state in man, Biophys. J., 16 (1976), 897-910.
doi: 10.1016/S0006-3495(76)85740-2. |
[26] |
F. Schabel, Jr., H. Skipper and W. Wilcox, Experimental evaluation of potential anti-cancer agents. XIII. On the criteria and kinetics associated with curability of experimental leukemia, Cancer Chemo. Rep., 25 (1964), 1-111. |
[27] |
L. B. Sheiner and N. H. G. Holford, Determination of maximum effect, Clin. Pharmacology & Therapeutics, 71 (2002), pp.304.
doi: 10.1067/mcp.2002.122277. |
[28] |
G. W. Swan and T. L. Vincent, Optimal control analysis in the chemotherapy of IgG multiple myeloma, Bull. Math. Biol., 39 (1977), 317-337. |
[29] |
Y. Todorov, E. Fimmel, A. S. Bratus, Y. S. Semenov and F. Nürnberg, An optimal strategy for leukemia therapy: A multi-objective approach, Russian Journal of Numerical Analysis and Mathematical Modelling, 26 (2011), 589-604. |
show all references
References:
[1] |
E. K. Afenya and D. E. Bentil, Models of acute myeloblastic leukemia and its chemotherapy, in "Computational Medicine, Public Health, and Biotechnology Part I. World Scientific" New Jersey, (1995), pp. 397. |
[2] |
E. K. Afenya, Cancer treatment strategies and mathematical modeling, in "Mathematical Models in Medical and Health Sciences" (eds. M. A. Horn, G. Simonett and G. F. Webb), Vanderbilt University. Nashville, (1998), 1-8. |
[3] |
E. K. Afenya and C. P. Calderón, Modeling disseminated cancers: A review of mathematical models, Comm. Theor. Biol., 8 (2003), 225-253.
doi: 10.1080/08948550302449. |
[4] |
E. K. Afenya and C. P. Calderón, A brief look at a normal cell decline and inhibition in acute leukemia, J. Can. Det. Prev.,, 20 (1996), 171-179. |
[5] |
E. K. Afenya, Acute leukemia and chemotherapy: a modeling viewpoint, Math. Biosci., 138 (1996), 79-100.
doi: 10.1016/S0025-5564(96)00086-7. |
[6] |
A. V. Antipov and A. S. Bratus', Mathematical model of optimal chemotherapy strategy with allowance for cell population dynamics in a heterogeneous tumor, Zh. Vychisl. Mat. Mat. Fiz., 49 (2009), 1907-1919 |
[7] |
A. S. Bratus, E. Fimmel, Y. Todorov, Y. S. Semenov and F. Nürnberg, On strategies on a mathematical model for leukemia therapy, Nonlinear Analysis: Real World Applications, 13 (2012), 1044-1059.
doi: 10.1016/j.nonrwa.2011.02.027. |
[8] |
B. D. Clarkson, Acute myelocytic leukemia in adults, Cancer, 30 (1972), 1572-1582.
doi: 10.1002/1097-0142(197212)30:6<1572::AID-CNCR2820300624>3.0.CO;2-M. |
[9] |
B. Djulbegovic and S. Svetina, Mathematical model of acute myeloblastic leukemia: an investigation of a relevant kinetic parameters, Cell Tissue Kinet., 18 (1985), 307-319. |
[10] |
M. Engelhart, D. Lebiedz and S. Sager, Optimal control for selected cancer chemotherapy ODE models: A view on the potential of optimal schedules and choice of objective function, Mathematical Biosciences, 229 (2011), 123-134.
doi: 10.1016/j.mbs.2010.11.007. |
[11] |
A. F. Filippov, "Differential Equations with Discontinuous Righthand Sides," Springer, 1988. |
[12] |
K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies, SIAM Journal on Applied Mathematics, 63 (2003), 1954-1971.
doi: 10.1137/S0036139902413489. |
[13] |
K. R. Fister and J. C. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy, SIAM Journal on Applied Mathematics, 60 (2000), 1059-1072.
doi: 10.1137/S0036139998338509. |
[14] |
C. L. Frenzen and J. D. Murray:, A cell kinetics justification for Gompertz equation, SIAM J. Appl. Math., 46 (1986), 614-624.
doi: 10.1137/0146042. |
[15] |
C. Guiot, P. G. Degiorgis, P. P. Delsanto, P. Gabriele and T. S. Deisboeck, Does tumour growth follow a universal law?, J. Theor. Biol., 225 (2003), 147-151.
doi: 10.1016/S0022-5193(03)00221-2. |
[16] |
"Handbook of Cancer Models with Applications," (W.-Y. Tan, L. Hanin Eds.), Ser. Math. Biology and Medicine; World Scientific. Vol. 9, 2008. |
[17] |
N. H. G. Holford and L. B. Sheiner, Understanding the dose-effect relationship-clinical application of pharmacokinetic-pharmacodynamic models, Clin. Pharmacokin, 6 (1981), 429-453.
doi: 10.2165/00003088-198106060-00002. |
[18] |
D. E. Kirk, "Optimal Contol Theory: An Introduction," Prentice-Hall, 1970 |
[19] |
U. Ledzewicz, A. d'Onofrio, H. Maurer and H. Schaettler, On optimal delivery of combination therapy for tumors, Mathematical Biosciences, 222 (2009), 13-26.
doi: 10.1016/j.mbs.2009.08.004. |
[20] |
U. Ledzewicz and H. Schaettler, Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy, Mathematical Biosciences, 206 (2007), 320-342.
doi: 10.1016/j.mbs.2005.03.013. |
[21] |
A. S. Matveev and A. V. Savkin, Optimal control regimens: influence of tumours on normal cells and several toxicity constraints, IMA J. Math. Appl. Med. Biol., 18 (2001), 25-40.
doi: 10.1093/imammb/18.1.25. |
[22] |
L. Norton and R. Simon, The Norton-Simon Hypothesis: designing more effective and less toxic chemotherapeutic regimens, Nature Clinical Practice, 3 Nr. 8, (2006). |
[23] |
L. Norton and R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules, Cancer Treat Rep., 61(1977) Oct, 1307-1317. PubMed PMID: 589597. |
[24] |
J. C. Panetta, A mathematical model of breast and ovarian cancer treated with paclitaxel, Mathematical Biosciences, 146 (1997), 89-113.
doi: 10.1016/S0025-5564(97)00077-1. |
[25] |
S. I. Rubinow and J. L. Lebowitz, A mathematical model of the acute myeloblastic leukemic state in man, Biophys. J., 16 (1976), 897-910.
doi: 10.1016/S0006-3495(76)85740-2. |
[26] |
F. Schabel, Jr., H. Skipper and W. Wilcox, Experimental evaluation of potential anti-cancer agents. XIII. On the criteria and kinetics associated with curability of experimental leukemia, Cancer Chemo. Rep., 25 (1964), 1-111. |
[27] |
L. B. Sheiner and N. H. G. Holford, Determination of maximum effect, Clin. Pharmacology & Therapeutics, 71 (2002), pp.304.
doi: 10.1067/mcp.2002.122277. |
[28] |
G. W. Swan and T. L. Vincent, Optimal control analysis in the chemotherapy of IgG multiple myeloma, Bull. Math. Biol., 39 (1977), 317-337. |
[29] |
Y. Todorov, E. Fimmel, A. S. Bratus, Y. S. Semenov and F. Nürnberg, An optimal strategy for leukemia therapy: A multi-objective approach, Russian Journal of Numerical Analysis and Mathematical Modelling, 26 (2011), 589-604. |
[1] |
Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040 |
[2] |
Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129 |
[3] |
Tania Biswas, Elisabetta Rocca. Long time dynamics of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2455-2469. doi: 10.3934/dcdsb.2021140 |
[4] |
Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi. On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. Mathematical Biosciences & Engineering, 2013, 10 (3) : 803-819. doi: 10.3934/mbe.2013.10.803 |
[5] |
Ben Sheller, Domenico D'Alessandro. Analysis of a cancer dormancy model and control of immuno-therapy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1037-1053. doi: 10.3934/mbe.2015.12.1037 |
[6] |
Wei Feng, Shuhua Hu, Xin Lu. Optimal controls for a 3-compartment model for cancer chemotherapy with quadratic objective. Conference Publications, 2003, 2003 (Special) : 544-553. doi: 10.3934/proc.2003.2003.544 |
[7] |
Shuo Wang, Heinz Schättler. Optimal control for cancer chemotherapy under tumor heterogeneity with Michealis-Menten pharmacodynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2383-2405. doi: 10.3934/dcdsb.2019100 |
[8] |
Urszula Ledzewicz, Heinz Schättler, Shuo Wang. On the role of tumor heterogeneity for optimal cancer chemotherapy. Networks and Heterogeneous Media, 2019, 14 (1) : 131-147. doi: 10.3934/nhm.2019007 |
[9] |
Urszula Ledzewicz, Helen Moore. Optimal control applied to a generalized Michaelis-Menten model of CML therapy. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 331-346. doi: 10.3934/dcdsb.2018022 |
[10] |
Luis A. Fernández, Cecilia Pola. Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1563-1588. doi: 10.3934/dcdsb.2014.19.1563 |
[11] |
Urszula Ledzewicz, Heinz Schättler. Controlling a model for bone marrow dynamics in cancer chemotherapy. Mathematical Biosciences & Engineering, 2004, 1 (1) : 95-110. doi: 10.3934/mbe.2004.1.95 |
[12] |
Jerzy Klamka, Helmut Maurer, Andrzej Swierniak. Local controllability and optimal control for\newline a model of combined anticancer therapy with control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 195-216. doi: 10.3934/mbe.2017013 |
[13] |
Urszula Ledzewicz, Heinz Schättler. The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences & Engineering, 2005, 2 (3) : 561-578. doi: 10.3934/mbe.2005.2.561 |
[14] |
Hsiu-Chuan Wei. Mathematical and numerical analysis of a mathematical model of mixed immunotherapy and chemotherapy of cancer. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1279-1295. doi: 10.3934/dcdsb.2016.21.1279 |
[15] |
Craig Collins, K. Renee Fister, Bethany Key, Mary Williams. Blasting neuroblastoma using optimal control of chemotherapy. Mathematical Biosciences & Engineering, 2009, 6 (3) : 451-467. doi: 10.3934/mbe.2009.6.451 |
[16] |
Luis A. Fernández, Cecilia Pola. Optimal control problems for the Gompertz model under the Norton-Simon hypothesis in chemotherapy. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2577-2612. doi: 10.3934/dcdsb.2018266 |
[17] |
Clara Rojas, Juan Belmonte-Beitia, Víctor M. Pérez-García, Helmut Maurer. Dynamics and optimal control of chemotherapy for low grade gliomas: Insights from a mathematical model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1895-1915. doi: 10.3934/dcdsb.2016028 |
[18] |
Arturo Alvarez-Arenas, Konstantin E. Starkov, Gabriel F. Calvo, Juan Belmonte-Beitia. Ultimate dynamics and optimal control of a multi-compartment model of tumor resistance to chemotherapy. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2017-2038. doi: 10.3934/dcdsb.2019082 |
[19] |
Urszula Ledzewicz, Behrooz Amini, Heinz Schättler. Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1257-1275. doi: 10.3934/mbe.2015.12.1257 |
[20] |
Alexander S. Bratus, Svetlana Yu. Kovalenko, Elena Fimmel. On viable therapy strategy for a mathematical spatial cancer model describing the dynamics of malignant and healthy cells. Mathematical Biosciences & Engineering, 2015, 12 (1) : 163-183. doi: 10.3934/mbe.2015.12.163 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]