• Previous Article
    Sociological phenomena as multiple nonlinearities: MTBI's new metaphor for complex human interactions
  • MBE Home
  • This Issue
  • Next Article
    Michaelis-Menten kinetics, the operator-repressor system, and least squares approaches
2013, 10(5&6): 1561-1586. doi: 10.3934/mbe.2013.10.1561

Mixed strategies and natural selection in resource allocation

1. 

School of Human Evolution and Social Change, Arizona State University, 900 S Cady Mall, Tempe, AZ, 85287, United States

2. 

Department of Mathematics, 2441 Sixth Street NW, Washington, DC, 20059, United States

3. 

National Institute for Biotechnology Information (NCBI), National Institutes of Health, 8600 Rockville Pike MSC 3830, Bethesda, MD 20894, United States

Received  August 2012 Revised  December 2012 Published  August 2013

An appropriate choice of strategy for resource allocation may frequently determine whether a population will be able to survive under the conditions of severe resource limitations. Here we focus on two classes of strategies allocation of resources towards rapid proliferation, or towards slower proliferation but increased physiological and environmental maintenance. We propose a generalized framework, where individuals within a population can use either strategy in different proportion for utilization of a common dynamical resource in order to maximize their fitness. We use the model to address two major questions, namely, whether either strategy is more likely to be selected for as a result of natural selection, and, if one allows for the possibility of resource over-consumption, whether either strategy is preferable for avoiding population collapse due to resource exhaustion. Analytical and numerical results suggest that the ultimate choice of strategy is determined primarily by the initial distribution of individuals in the population, and that while investment in physiological and environmental maintenance is a preferable strategy in a homogeneous population, no generalized prediction can be made about heterogeneous populations.
Citation: Irina Kareva, Faina Berezovkaya, Georgy Karev. Mixed strategies and natural selection in resource allocation. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1561-1586. doi: 10.3934/mbe.2013.10.1561
References:
[1]

A. Algar, J. Kerr and D. Currie, Quantifying the importance of regional and local filters for community trait structure in tropical and temperate zones,, Ecology, 92 (2011), 903.  doi: 10.1890/10-0606.1.  Google Scholar

[2]

N. Bautin and E. Leontovich, "Methods and Rules for the Qualitative Study of Dynamical Systems on the Plane,", Spravochnaya Matematicheskaya Biblioteka [Mathematical Reference Library], (1976).   Google Scholar

[3]

F. S. Berezovskaya, A. S. Novozhilov and G. P. Karev., Population models with singular equilibrium,, Mathematical Biosciences, 208 (2007), 270.  doi: 10.1016/j.mbs.2006.10.006.  Google Scholar

[4]

N. Chikatsu, Y. Nakamura, H. Sato, T. Fujita, S. Asano and T. Motokura, p53 mutations and tetraploids under r- and K-selection,, Oncogene, 21 (2002), 3043.  doi: 10.1038/sj.onc.1205413.  Google Scholar

[5]

J. Clark, Individuals and the variation needed for high species diversity in forest trees,, Science, 327 (2010), 1129.  doi: 10.1126/science.1183506.  Google Scholar

[6]

J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber and H. M. Lappin-Scott, Microbial biofilms,, Annual Reviews in Microbiology, 49 (1995), 711.   Google Scholar

[7]

V. J. Denef, L. H. Kalnejais, R. S. Mueller, P. Wilmes, B. J. Baker, B. C. Thomas, N. C. VerBerkmoes, R. L. Hettich and J. F. Banfield, Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities,, Proceedings of the National Academy of Sciences of the United States of America, 107 (2010), 2383.  doi: 10.1073/pnas.0907041107.  Google Scholar

[8]

T. Dobzhansky, The evolution in the tropics,, American Scientist, 38 (1950), 209.   Google Scholar

[9]

J. J. Elser, M. M. Kyle, M. S. Smith and J. D. Nagy, Biological stoichiometry in human cancer,, PloS ONE, 2 (2007).  doi: 10.1371/journal.pone.0001028.  Google Scholar

[10]

N. B. Grimm, S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu, X. Bai and J. M. Briggs, Global change and the ecology of cities,, Science, 319 (2008), 756.  doi: 10.1126/science.1150195.  Google Scholar

[11]

G. Hardin, The tragedy of the commons,, Science, 162 (1968), 1243.  doi: 10.1080/19390450903037302.  Google Scholar

[12]

International Cancer Genome Consortium, International network of cancer genome projects,, Nature, 464 (2010), 993.   Google Scholar

[13]

J. Kapur, "Maximum-Entropy Models in Science and Engineering,", John Wiley & Sons, (1989).   Google Scholar

[14]

G. P. Karev, On mathematical theory of selection: Continuous time population dynamics,, Journal of Mathematical Biology, 60 (2010), 107.  doi: 10.1007/s00285-009-0252-0.  Google Scholar

[15]

G. P. Karev, Principle of minimum discrimination information and replica dynamics,, Entropy, 12 (2010), 1673.  doi: 10.3390/e12071673.  Google Scholar

[16]

I. Kareva, F. S. Berezovskaya and C. Castillo-Chavez, Transitional regimes as early warning signals in resource dependent competition models,, Mathematical Biosciences, 240 (2012), 114.  doi: 10.1016/j.mbs.2012.06.001.  Google Scholar

[17]

D. C. Krakauer, K. M. Page and D. H. Erwin, Diversity, dilemmas, and monopolies of niche construction,, American Naturalist, 173 (2009), 26.   Google Scholar

[18]

Y. Kuznetsov, "Elements of Applied Bifurcation Theory,", Springer, (1998).   Google Scholar

[19]

R. H. MacArthur and R. Levins, The limiting similarity, convergence, and divergence of coexisting species,, American Naturalist, 101 (1967), 377.   Google Scholar

[20]

D. W. Macdonald, C. Newman, P. M. Nouvellet and C. D. Buesching, An analysis of Eurasian badger (Meles meles) population dynamics: Implications for regulatory mechanisms,, Journal of Mammalogy, 90 (2009), 1392.   Google Scholar

[21]

L. M. F. Merlo, J. W. Pepper, B. J. Reid and C. C. Maley, Cancer as an evolutionary and ecological process,, Nature Reviews Cancer, 6 (2006), 924.  doi: 10.1038/nrc2013.  Google Scholar

[22]

E. Ostrom, "Governing the Commons: The Evolution of Institutions for Collective Action,", Cambridge University Press, (1990).   Google Scholar

[23]

E. Ostrom, A general framework for analyzing sustainability of social-ecological systems,, Science, 325 (2009), 419.  doi: 10.1126/science.1172133.  Google Scholar

[24]

E. R. Pianka, Niche overlap and diffuse competition,, Proceedings of the National Academy of Sciences of the Unites States of America, 71 (1974), 2141.  doi: 10.1073/pnas.71.5.2141.  Google Scholar

[25]

B. Prakash, B. M. Veeregowda and G. Krishnappa, Biofilms: A survival strategy of bacteria,, Current Science, 85 (2003), 1299.   Google Scholar

[26]

D. Reznick, M..J. Bryant and F. Bashey., r- and K-selection revisited: the role of population regulation in life history evolution,, Ecology, 83.6 (): 1509.   Google Scholar

[27]

T. L. Russell, D. W. Lwetoijera, B. G. J. Knols, W. Takken, G. F. Killeen and H. M. Ferguson, Linking individual phenotype to density-dependent population growth: The influence of body size on the population dynamics of malaria vectors,, Proceedings of the Royal Society: Biological Sciences, 278 (2011), 3142.  doi: 10.1098/rspb.2011.0153.  Google Scholar

[28]

S. Stearns, The evolution of life history traits: A critique of the theory and a review of the data,, Annual Review of Ecology and Systematics, 8 (1977), 145.  doi: 10.1146/annurev.es.08.110177.001045.  Google Scholar

[29]

S. Stearns, "The Evolution of Life Histories,", Oxford University Press, (1992).   Google Scholar

[30]

S. Stearns, Life history evolution: Successes, limitations, and prospects,, Naturwissenschaften, 87 (2000), 476.  doi: 10.1007/s001140050763.  Google Scholar

[31]

M. Stratton, P. Campbell and P. A. Futreal, The cancer genome,, Nature, 458 (2009), 719.  doi: 10.1038/nature07943.  Google Scholar

[32]

S. B. Voytek and G. F. Joyce, Niche partitioning in the coevolution of 2 distinct RNA enzymes,, Proceedings of the National Academy of Sciences of the United States of America, 106 (2009), 7780.  doi: 10.1073/pnas.0903397106.  Google Scholar

[33]

H. M. Wilbur, D. W. Tinkle and J. P. Collins, Environmental certainty, trophic level, and resource availability in life history evolution,, American Naturalist, 108 (1974), 805.  doi: 10.1086/282956.  Google Scholar

show all references

References:
[1]

A. Algar, J. Kerr and D. Currie, Quantifying the importance of regional and local filters for community trait structure in tropical and temperate zones,, Ecology, 92 (2011), 903.  doi: 10.1890/10-0606.1.  Google Scholar

[2]

N. Bautin and E. Leontovich, "Methods and Rules for the Qualitative Study of Dynamical Systems on the Plane,", Spravochnaya Matematicheskaya Biblioteka [Mathematical Reference Library], (1976).   Google Scholar

[3]

F. S. Berezovskaya, A. S. Novozhilov and G. P. Karev., Population models with singular equilibrium,, Mathematical Biosciences, 208 (2007), 270.  doi: 10.1016/j.mbs.2006.10.006.  Google Scholar

[4]

N. Chikatsu, Y. Nakamura, H. Sato, T. Fujita, S. Asano and T. Motokura, p53 mutations and tetraploids under r- and K-selection,, Oncogene, 21 (2002), 3043.  doi: 10.1038/sj.onc.1205413.  Google Scholar

[5]

J. Clark, Individuals and the variation needed for high species diversity in forest trees,, Science, 327 (2010), 1129.  doi: 10.1126/science.1183506.  Google Scholar

[6]

J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber and H. M. Lappin-Scott, Microbial biofilms,, Annual Reviews in Microbiology, 49 (1995), 711.   Google Scholar

[7]

V. J. Denef, L. H. Kalnejais, R. S. Mueller, P. Wilmes, B. J. Baker, B. C. Thomas, N. C. VerBerkmoes, R. L. Hettich and J. F. Banfield, Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities,, Proceedings of the National Academy of Sciences of the United States of America, 107 (2010), 2383.  doi: 10.1073/pnas.0907041107.  Google Scholar

[8]

T. Dobzhansky, The evolution in the tropics,, American Scientist, 38 (1950), 209.   Google Scholar

[9]

J. J. Elser, M. M. Kyle, M. S. Smith and J. D. Nagy, Biological stoichiometry in human cancer,, PloS ONE, 2 (2007).  doi: 10.1371/journal.pone.0001028.  Google Scholar

[10]

N. B. Grimm, S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu, X. Bai and J. M. Briggs, Global change and the ecology of cities,, Science, 319 (2008), 756.  doi: 10.1126/science.1150195.  Google Scholar

[11]

G. Hardin, The tragedy of the commons,, Science, 162 (1968), 1243.  doi: 10.1080/19390450903037302.  Google Scholar

[12]

International Cancer Genome Consortium, International network of cancer genome projects,, Nature, 464 (2010), 993.   Google Scholar

[13]

J. Kapur, "Maximum-Entropy Models in Science and Engineering,", John Wiley & Sons, (1989).   Google Scholar

[14]

G. P. Karev, On mathematical theory of selection: Continuous time population dynamics,, Journal of Mathematical Biology, 60 (2010), 107.  doi: 10.1007/s00285-009-0252-0.  Google Scholar

[15]

G. P. Karev, Principle of minimum discrimination information and replica dynamics,, Entropy, 12 (2010), 1673.  doi: 10.3390/e12071673.  Google Scholar

[16]

I. Kareva, F. S. Berezovskaya and C. Castillo-Chavez, Transitional regimes as early warning signals in resource dependent competition models,, Mathematical Biosciences, 240 (2012), 114.  doi: 10.1016/j.mbs.2012.06.001.  Google Scholar

[17]

D. C. Krakauer, K. M. Page and D. H. Erwin, Diversity, dilemmas, and monopolies of niche construction,, American Naturalist, 173 (2009), 26.   Google Scholar

[18]

Y. Kuznetsov, "Elements of Applied Bifurcation Theory,", Springer, (1998).   Google Scholar

[19]

R. H. MacArthur and R. Levins, The limiting similarity, convergence, and divergence of coexisting species,, American Naturalist, 101 (1967), 377.   Google Scholar

[20]

D. W. Macdonald, C. Newman, P. M. Nouvellet and C. D. Buesching, An analysis of Eurasian badger (Meles meles) population dynamics: Implications for regulatory mechanisms,, Journal of Mammalogy, 90 (2009), 1392.   Google Scholar

[21]

L. M. F. Merlo, J. W. Pepper, B. J. Reid and C. C. Maley, Cancer as an evolutionary and ecological process,, Nature Reviews Cancer, 6 (2006), 924.  doi: 10.1038/nrc2013.  Google Scholar

[22]

E. Ostrom, "Governing the Commons: The Evolution of Institutions for Collective Action,", Cambridge University Press, (1990).   Google Scholar

[23]

E. Ostrom, A general framework for analyzing sustainability of social-ecological systems,, Science, 325 (2009), 419.  doi: 10.1126/science.1172133.  Google Scholar

[24]

E. R. Pianka, Niche overlap and diffuse competition,, Proceedings of the National Academy of Sciences of the Unites States of America, 71 (1974), 2141.  doi: 10.1073/pnas.71.5.2141.  Google Scholar

[25]

B. Prakash, B. M. Veeregowda and G. Krishnappa, Biofilms: A survival strategy of bacteria,, Current Science, 85 (2003), 1299.   Google Scholar

[26]

D. Reznick, M..J. Bryant and F. Bashey., r- and K-selection revisited: the role of population regulation in life history evolution,, Ecology, 83.6 (): 1509.   Google Scholar

[27]

T. L. Russell, D. W. Lwetoijera, B. G. J. Knols, W. Takken, G. F. Killeen and H. M. Ferguson, Linking individual phenotype to density-dependent population growth: The influence of body size on the population dynamics of malaria vectors,, Proceedings of the Royal Society: Biological Sciences, 278 (2011), 3142.  doi: 10.1098/rspb.2011.0153.  Google Scholar

[28]

S. Stearns, The evolution of life history traits: A critique of the theory and a review of the data,, Annual Review of Ecology and Systematics, 8 (1977), 145.  doi: 10.1146/annurev.es.08.110177.001045.  Google Scholar

[29]

S. Stearns, "The Evolution of Life Histories,", Oxford University Press, (1992).   Google Scholar

[30]

S. Stearns, Life history evolution: Successes, limitations, and prospects,, Naturwissenschaften, 87 (2000), 476.  doi: 10.1007/s001140050763.  Google Scholar

[31]

M. Stratton, P. Campbell and P. A. Futreal, The cancer genome,, Nature, 458 (2009), 719.  doi: 10.1038/nature07943.  Google Scholar

[32]

S. B. Voytek and G. F. Joyce, Niche partitioning in the coevolution of 2 distinct RNA enzymes,, Proceedings of the National Academy of Sciences of the United States of America, 106 (2009), 7780.  doi: 10.1073/pnas.0903397106.  Google Scholar

[33]

H. M. Wilbur, D. W. Tinkle and J. P. Collins, Environmental certainty, trophic level, and resource availability in life history evolution,, American Naturalist, 108 (1974), 805.  doi: 10.1086/282956.  Google Scholar

[1]

Semu Mitiku Kassa. Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Mathematical Biosciences & Engineering, 2018, 15 (1) : 255-273. doi: 10.3934/mbe.2018011

[2]

Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial & Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63

[3]

Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040

[4]

Stephen Pankavich, Christian Parkinson. Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1237-1257. doi: 10.3934/dcdsb.2016.21.1237

[5]

Elena Fimmel, Yury S. Semenov, Alexander S. Bratus. On optimal and suboptimal treatment strategies for a mathematical model of leukemia. Mathematical Biosciences & Engineering, 2013, 10 (1) : 151-165. doi: 10.3934/mbe.2013.10.151

[6]

Ali Gharouni, Lin Wang. Modeling the spread of bed bug infestation and optimal resource allocation for disinfestation. Mathematical Biosciences & Engineering, 2016, 13 (5) : 969-980. doi: 10.3934/mbe.2016025

[7]

Jafar Sadeghi, Mojtaba Ghiyasi, Akram Dehnokhalaji. Resource allocation and target setting based on virtual profit improvement. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019043

[8]

Kamaldeen Okuneye, Ahmed Abdelrazec, Abba B. Gumel. Mathematical analysis of a weather-driven model for the population ecology of mosquitoes. Mathematical Biosciences & Engineering, 2018, 15 (1) : 57-93. doi: 10.3934/mbe.2018003

[9]

Mohamed Boulanouar. On a Mathematical model with non-compact boundary conditions describing bacterial population (Ⅱ). Evolution Equations & Control Theory, 2019, 8 (2) : 247-271. doi: 10.3934/eect.2019014

[10]

Evans K. Afenya. Using Mathematical Modeling as a Resource in Clinical Trials. Mathematical Biosciences & Engineering, 2005, 2 (3) : 421-436. doi: 10.3934/mbe.2005.2.421

[11]

M.A.J Chaplain, G. Lolas. Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks & Heterogeneous Media, 2006, 1 (3) : 399-439. doi: 10.3934/nhm.2006.1.399

[12]

Reinhard Bürger. A survey of migration-selection models in population genetics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 883-959. doi: 10.3934/dcdsb.2014.19.883

[13]

Yan Zeng, Zhongfei Li, Jingjun Liu. Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers. Journal of Industrial & Management Optimization, 2010, 6 (3) : 483-496. doi: 10.3934/jimo.2010.6.483

[14]

Leonid Shaikhet. Stability of a positive equilibrium state for a stochastically perturbed mathematical model of glassy-winged sharpshooter population. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1167-1174. doi: 10.3934/mbe.2014.11.1167

[15]

Najat Ziyadi. A male-female mathematical model of human papillomavirus (HPV) in African American population. Mathematical Biosciences & Engineering, 2017, 14 (1) : 339-358. doi: 10.3934/mbe.2017022

[16]

Andrew J. Majda, John Harlim, Boris Gershgorin. Mathematical strategies for filtering turbulent dynamical systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 441-486. doi: 10.3934/dcds.2010.27.441

[17]

Zhisheng Shuai, P. van den Driessche. Impact of heterogeneity on the dynamics of an SEIR epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (2) : 393-411. doi: 10.3934/mbe.2012.9.393

[18]

Hans Weinberger. The approximate controllability of a model for mutant selection. Evolution Equations & Control Theory, 2013, 2 (4) : 741-747. doi: 10.3934/eect.2013.2.741

[19]

Jeong-Mi Yoon, Volodymyr Hrynkiv, Lisa Morano, Anh Tuan Nguyen, Sara Wilder, Forrest Mitchell. Mathematical modeling of Glassy-winged sharpshooter population. Mathematical Biosciences & Engineering, 2014, 11 (3) : 667-677. doi: 10.3934/mbe.2014.11.667

[20]

Wonlyul Ko, Inkyung Ahn, Shengqiang Liu. Asymptotical behaviors of a general diffusive consumer-resource model with maturation delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1715-1733. doi: 10.3934/dcdsb.2015.20.1715

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]