2013, 10(5&6): 1587-1607. doi: 10.3934/mbe.2013.10.1587

Sociological phenomena as multiple nonlinearities: MTBI's new metaphor for complex human interactions

1. 

Mathematics Department, University of Texas at Arlington, Box 19408, Arlington, TX 76019-0408, United States

Received  August 2012 Revised  March 2013 Published  August 2013

Mathematical models are well-established as metaphors for biological and epidemiological systems. The framework of epidemic modeling has also been applied to sociological phenomena driven by peer pressure, notably in two dozen dynamical systems research projects developed through the Mathematical and Theoretical Biology Institute, and popularized by authors such as Gladwell (2000). This article reviews these studies and their common structures, and identifies a new mathematical metaphor which uses multiple nonlinearities to describe the multiple thresholds governing the persistence of hierarchical phenomena, including the situation termed a ``backward bifurcation'' in mathematical epidemiology, where established phenomena can persist in circumstances under which the phenomena could not initially emerge.
Citation: Christopher M. Kribs-Zaleta. Sociological phenomena as multiple nonlinearities: MTBI's new metaphor for complex human interactions. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1587-1607. doi: 10.3934/mbe.2013.10.1587
References:
[1]

Carlos A. Acevedo-Estefania, Christina Gonzalez, Karen R. Rios-Soto, Eric D. Summerville, Baojun Song and Carlos Castillo-Chavez, A mathematical model for lung cancer: The effects of second-hand smoke and education, Biometrics Unit Technical Report BU-1525-M, Cornell University, 2000. Available from: http://mtbi.asu.edu/research/archive.

[2]

A. A. Alchian, Uncertainty, evolution and economic theory, J. Political Economy, 58 (1950), 211-221. doi: 10.1086/256940.

[3]

Joshua Austin, Emma Smith, Sowmya Srinivasan and Fabio Sanchez, Social dynamics of gang involvement: A mathematical approach, MCMSC Technical Report MTBI-08-08M, Arizona State University, 2011. Available from: http://mtbi.asu.edu/research/archive.

[4]

Luís M. A. Bettencourt, Ariel Cintrón-Arias, David I. Kaiser and Carlos Castillo-Chavez, The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models, Physica A, 364 (2006), 513-536. doi: 10.2172/990668.

[5]

Corvina D. H. Boyd, Alison Castro, Nicolás Crisosto, Arlene Morales Evangelista, Carlos Castillo-Chavez and Christopher Kribs-Zaleta, A socially transmitted disease: Teacher qualifications and dropout rates, Studies in Theoretical Biology: A Collection of Undergraduate Research, 1 (2000), 549-580; Biometrics Unit Technical Report BU-815, Cornell University. Available from: http://mtbi.asu.edu/research/archive.

[6]

Erika Camacho, Julio Villarreal and Monica F. Yichoy, Delinquency dynamics, Biometrics Unit Technical Report BU-1504-M, Cornell University, 1997. Available from: http://mtbi.asu.edu/research/archive.

[7]

Carlos Castillo-Garsow, Guarionex Jordán-Salivia and Ariel Rodriguez-Herrera, Mathematical models for the dynamics of tobacco use, recovery, and relapse, Biometrics Unit Technical Report BU-1505-M, Cornell University, 1997. Available from: http://mtbi.asu.edu/research/archive.

[8]

Jonathan Crane, The epidemic theory of ghettos and neighborhood effects on dropping out and teenage childbearing, Amer. J. Soc., 95 (1989), 1226-1259. doi: 10.1086/229654.

[9]

Nicolás Crisosto, Christopher Kribs-Zaleta, Carlos Castillo-Chavez and Stephen Wirkus, Community resilience in collaborative learning, Discrete and Continuous Dynamical Systems, Series B, 14 (2010), 17-40. doi: 10.3934/dcdsb.2010.14.17.

[10]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous population, Journal of Mathematical Biology, 28 (1990), 365-382. doi: 10.1007/BF00178324.

[11]

Jennifer L. Dillon, Natalia Baeza, Mary Cristina Ruales and Baojun Song, A mathematical model of depression in young women as a function of the pressure to be "beautiful,'' Biometrics Unit Technical Report BU-1616-M, Cornell University, 2002. Available from: http://mtbi.asu.edu/research/archive.

[12]

Arlene Morales Evangelista, Angela R. Ortiz, Karen R. Ríos-Soto and Alicia Urdapilleta, USA the fast food nation: Obesity as an epidemic, MCMSC Technical Report MTBI-01-3M, Arizona State University, 2004. Available from: http://mtbi.asu.edu/research/archive.

[13]

Malcolm Gladwell, "The Tipping Point,'' Little, Brown & Co., New York, 2000.

[14]

Natalie S. Glance and Bernardo A. Huberman, The outbreak of cooperation, J. Math. Soc., 17 (1993), 281-302. doi: 10.1080/0022250X.1993.9990112.

[15]

Beverly González, Emilia Huerta-Sánchez, Angela Ortiz-Nieves, Terannie Vázquez-Álvarez and Christopher Kribs-Zaleta, Am I too fat? Bulimia as an epidemic, Journal of Mathematical Psychology, 47 (2003), 515-526. doi: 10.1016/j.jmp.2003.08.002.

[16]

Mark Granovetter, Threshold models of collective behavior, Am. J. Soc., 83 (1978), 1420-1443. doi: 10.1086/226707.

[17]

Mark Granovetter and R. Soong, Threshold models of diffusion and collective behavior, J. Math. Soc., 9 (1983), 165-179. doi: 10.1080/0022250X.1983.9989941.

[18]

Howard E. Gruber, Ensembles of metaphors in creative scientific thinking, in "Creativity, Psychology and the History of Science'' (eds. Howard E. Gruber and Katja Bodeker), Springer, New York, (2005), 259-270.

[19]

Karl P. Hadeler and Carlos Castillo-Chávez, A core group model for disease transmission, Math. Biosciences, 128 (1995), 41-55. doi: 10.1016/0025-5564(94)00066-9.

[20]

J. A. P. Heesterbeek, A brief history of $R_0$ and a recipe for its calculation, Acta Biotheoretica, 50 (2002), 189-204. doi: 10.1023/A:1016599411804.

[21]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. Part I, Proc. Royal Soc. Edin. A, 115 (1927), 700-721; Reprinted in Bull. Math. Biol., 53 (1991), 33-55.

[22]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. II. The problem of endemicity, Proc. Royal Soc. Edin. A, 138 (1932), 55-83; Reprinted in Bull. Math. Biol., 53 (1991), 57-87.

[23]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. III. Further studies of the problem of endemicity, Proc. Royal Soc. Edin. A, 141 (1933), 94-122; Reprinted in Bull. Math. Biol., 53 (1991), 89-118.

[24]

Christopher M. Kribs-Zaleta, Alternative transmission modes for Trypanosoma cruzi, Math. Biosci. Eng., 7 (2010), 657-673. doi: 10.3934/mbe.2010.7.657.

[25]

Christopher M. Kribs-Zaleta and Jorge X. Velasco-Hernández, A simple vaccination model with multiple endemic states, Math. Biosciences, 164 (2000), 183-201. doi: 10.1016/S0025-5564(00)00003-1.

[26]

Anuj Mubayi, Priscilla E. Greenwood, Carlos Castillo-Chavez, Paul Gruenewald and Dennis M. Gorman, Impact of relative residence times on the distribution of heavy drinkers in highly distinct environments, Socio-Economic Planning Sciences, 43 (2010), 1-12. doi: 10.1016/j.seps.2009.02.002.

[27]

R. R. Nelson and S. G. Winter, "An Evolutionary Theory of Economic Change,'' Harvard Univ. Press, Cambridge, MA, 1982.

[28]

E. T. Penrose, Biological analogies in the theory of the firm, Amer. Economic Review, 42 (1952), 804-819.

[29]

Tönu Puu, "Nonlinear Economic Dynamics,'' Springer-Verlag, New York, 1992.

[30]

Daniel M. Romero, Christopher M. Kribs-Zaleta, Anuj Mubayi and Clara Orbe, An epidemiological approach to the spread of political third parties, Discrete and Continuous Dynamical Systems, Series B, 15 (2011), 707-738. doi: 10.3934/dcdsb.2011.15.707.

[31]

Ronald Ross, "The Prevention of Malaria,'' Second edition, Murray, London, 1911.

[32]

Fabio Sánchez, Xiaohong Wang, Carlos Castillo-Chavez, Dennis M. Gorman and Paul J. Gruenewald, Drinking as an epidemic: A simple mathematical model with recovery and relapse, in "Therapist's Guide to Evidence-Based Relapse Prevention'' (eds. Katie Witkiewitz and G. Alan Marlatt), Academic Press/Elsevier, (2007), 353-368.

[33]

Thomas Schelling, Dynamic models of segregation, J. Math. Soc., 1 (1971), 143-186. doi: 10.1080/0022250X.1971.9989794.

[34]

Susan Seal, William Z. Rayfield, Carl Ballard II, Holden Tran, Christopher Kribs-Zaleta and Edgar Díaz, A dynamical interpretation of the three-strikes law, MCMSC Technical Report MTBI-04-07M, Arizona State University, 2007. Available from: http://mtbi.asu.edu/research/archive.

[35]

Baojun Song, Melissa Castillo-Garsow, Karen R. Ríos-Soto, Marcin Mejran, Leilani Henson and Carlos Castillo-Chavez, Raves, clubs, and ecstasy: The impact of peer pressure, Mathematical Biosciences and Engineering, 3 (2006), 249-266.

[36]

Pauline Van den Driessche and James Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[37]

Wolfgang Weidlich, Synergetic modelling concepts for sociodynamics with application to collective political opinion formation, J. Math. Soc., 18 (1994), 267-291. doi: 10.1080/0022250X.1994.9990129.

[38]

Wolfgang Weidlich, "Sociodynamics. A Systematic Approach to Mathematical Modelling in the Social Sciences,'' Harwood Academic Publishers, Amsterdam, 2000.

show all references

References:
[1]

Carlos A. Acevedo-Estefania, Christina Gonzalez, Karen R. Rios-Soto, Eric D. Summerville, Baojun Song and Carlos Castillo-Chavez, A mathematical model for lung cancer: The effects of second-hand smoke and education, Biometrics Unit Technical Report BU-1525-M, Cornell University, 2000. Available from: http://mtbi.asu.edu/research/archive.

[2]

A. A. Alchian, Uncertainty, evolution and economic theory, J. Political Economy, 58 (1950), 211-221. doi: 10.1086/256940.

[3]

Joshua Austin, Emma Smith, Sowmya Srinivasan and Fabio Sanchez, Social dynamics of gang involvement: A mathematical approach, MCMSC Technical Report MTBI-08-08M, Arizona State University, 2011. Available from: http://mtbi.asu.edu/research/archive.

[4]

Luís M. A. Bettencourt, Ariel Cintrón-Arias, David I. Kaiser and Carlos Castillo-Chavez, The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models, Physica A, 364 (2006), 513-536. doi: 10.2172/990668.

[5]

Corvina D. H. Boyd, Alison Castro, Nicolás Crisosto, Arlene Morales Evangelista, Carlos Castillo-Chavez and Christopher Kribs-Zaleta, A socially transmitted disease: Teacher qualifications and dropout rates, Studies in Theoretical Biology: A Collection of Undergraduate Research, 1 (2000), 549-580; Biometrics Unit Technical Report BU-815, Cornell University. Available from: http://mtbi.asu.edu/research/archive.

[6]

Erika Camacho, Julio Villarreal and Monica F. Yichoy, Delinquency dynamics, Biometrics Unit Technical Report BU-1504-M, Cornell University, 1997. Available from: http://mtbi.asu.edu/research/archive.

[7]

Carlos Castillo-Garsow, Guarionex Jordán-Salivia and Ariel Rodriguez-Herrera, Mathematical models for the dynamics of tobacco use, recovery, and relapse, Biometrics Unit Technical Report BU-1505-M, Cornell University, 1997. Available from: http://mtbi.asu.edu/research/archive.

[8]

Jonathan Crane, The epidemic theory of ghettos and neighborhood effects on dropping out and teenage childbearing, Amer. J. Soc., 95 (1989), 1226-1259. doi: 10.1086/229654.

[9]

Nicolás Crisosto, Christopher Kribs-Zaleta, Carlos Castillo-Chavez and Stephen Wirkus, Community resilience in collaborative learning, Discrete and Continuous Dynamical Systems, Series B, 14 (2010), 17-40. doi: 10.3934/dcdsb.2010.14.17.

[10]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous population, Journal of Mathematical Biology, 28 (1990), 365-382. doi: 10.1007/BF00178324.

[11]

Jennifer L. Dillon, Natalia Baeza, Mary Cristina Ruales and Baojun Song, A mathematical model of depression in young women as a function of the pressure to be "beautiful,'' Biometrics Unit Technical Report BU-1616-M, Cornell University, 2002. Available from: http://mtbi.asu.edu/research/archive.

[12]

Arlene Morales Evangelista, Angela R. Ortiz, Karen R. Ríos-Soto and Alicia Urdapilleta, USA the fast food nation: Obesity as an epidemic, MCMSC Technical Report MTBI-01-3M, Arizona State University, 2004. Available from: http://mtbi.asu.edu/research/archive.

[13]

Malcolm Gladwell, "The Tipping Point,'' Little, Brown & Co., New York, 2000.

[14]

Natalie S. Glance and Bernardo A. Huberman, The outbreak of cooperation, J. Math. Soc., 17 (1993), 281-302. doi: 10.1080/0022250X.1993.9990112.

[15]

Beverly González, Emilia Huerta-Sánchez, Angela Ortiz-Nieves, Terannie Vázquez-Álvarez and Christopher Kribs-Zaleta, Am I too fat? Bulimia as an epidemic, Journal of Mathematical Psychology, 47 (2003), 515-526. doi: 10.1016/j.jmp.2003.08.002.

[16]

Mark Granovetter, Threshold models of collective behavior, Am. J. Soc., 83 (1978), 1420-1443. doi: 10.1086/226707.

[17]

Mark Granovetter and R. Soong, Threshold models of diffusion and collective behavior, J. Math. Soc., 9 (1983), 165-179. doi: 10.1080/0022250X.1983.9989941.

[18]

Howard E. Gruber, Ensembles of metaphors in creative scientific thinking, in "Creativity, Psychology and the History of Science'' (eds. Howard E. Gruber and Katja Bodeker), Springer, New York, (2005), 259-270.

[19]

Karl P. Hadeler and Carlos Castillo-Chávez, A core group model for disease transmission, Math. Biosciences, 128 (1995), 41-55. doi: 10.1016/0025-5564(94)00066-9.

[20]

J. A. P. Heesterbeek, A brief history of $R_0$ and a recipe for its calculation, Acta Biotheoretica, 50 (2002), 189-204. doi: 10.1023/A:1016599411804.

[21]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. Part I, Proc. Royal Soc. Edin. A, 115 (1927), 700-721; Reprinted in Bull. Math. Biol., 53 (1991), 33-55.

[22]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. II. The problem of endemicity, Proc. Royal Soc. Edin. A, 138 (1932), 55-83; Reprinted in Bull. Math. Biol., 53 (1991), 57-87.

[23]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. III. Further studies of the problem of endemicity, Proc. Royal Soc. Edin. A, 141 (1933), 94-122; Reprinted in Bull. Math. Biol., 53 (1991), 89-118.

[24]

Christopher M. Kribs-Zaleta, Alternative transmission modes for Trypanosoma cruzi, Math. Biosci. Eng., 7 (2010), 657-673. doi: 10.3934/mbe.2010.7.657.

[25]

Christopher M. Kribs-Zaleta and Jorge X. Velasco-Hernández, A simple vaccination model with multiple endemic states, Math. Biosciences, 164 (2000), 183-201. doi: 10.1016/S0025-5564(00)00003-1.

[26]

Anuj Mubayi, Priscilla E. Greenwood, Carlos Castillo-Chavez, Paul Gruenewald and Dennis M. Gorman, Impact of relative residence times on the distribution of heavy drinkers in highly distinct environments, Socio-Economic Planning Sciences, 43 (2010), 1-12. doi: 10.1016/j.seps.2009.02.002.

[27]

R. R. Nelson and S. G. Winter, "An Evolutionary Theory of Economic Change,'' Harvard Univ. Press, Cambridge, MA, 1982.

[28]

E. T. Penrose, Biological analogies in the theory of the firm, Amer. Economic Review, 42 (1952), 804-819.

[29]

Tönu Puu, "Nonlinear Economic Dynamics,'' Springer-Verlag, New York, 1992.

[30]

Daniel M. Romero, Christopher M. Kribs-Zaleta, Anuj Mubayi and Clara Orbe, An epidemiological approach to the spread of political third parties, Discrete and Continuous Dynamical Systems, Series B, 15 (2011), 707-738. doi: 10.3934/dcdsb.2011.15.707.

[31]

Ronald Ross, "The Prevention of Malaria,'' Second edition, Murray, London, 1911.

[32]

Fabio Sánchez, Xiaohong Wang, Carlos Castillo-Chavez, Dennis M. Gorman and Paul J. Gruenewald, Drinking as an epidemic: A simple mathematical model with recovery and relapse, in "Therapist's Guide to Evidence-Based Relapse Prevention'' (eds. Katie Witkiewitz and G. Alan Marlatt), Academic Press/Elsevier, (2007), 353-368.

[33]

Thomas Schelling, Dynamic models of segregation, J. Math. Soc., 1 (1971), 143-186. doi: 10.1080/0022250X.1971.9989794.

[34]

Susan Seal, William Z. Rayfield, Carl Ballard II, Holden Tran, Christopher Kribs-Zaleta and Edgar Díaz, A dynamical interpretation of the three-strikes law, MCMSC Technical Report MTBI-04-07M, Arizona State University, 2007. Available from: http://mtbi.asu.edu/research/archive.

[35]

Baojun Song, Melissa Castillo-Garsow, Karen R. Ríos-Soto, Marcin Mejran, Leilani Henson and Carlos Castillo-Chavez, Raves, clubs, and ecstasy: The impact of peer pressure, Mathematical Biosciences and Engineering, 3 (2006), 249-266.

[36]

Pauline Van den Driessche and James Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[37]

Wolfgang Weidlich, Synergetic modelling concepts for sociodynamics with application to collective political opinion formation, J. Math. Soc., 18 (1994), 267-291. doi: 10.1080/0022250X.1994.9990129.

[38]

Wolfgang Weidlich, "Sociodynamics. A Systematic Approach to Mathematical Modelling in the Social Sciences,'' Harwood Academic Publishers, Amsterdam, 2000.

[1]

Linda J. S. Allen, P. van den Driessche. Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences & Engineering, 2006, 3 (3) : 445-458. doi: 10.3934/mbe.2006.3.445

[2]

Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999

[3]

Benjamin H. Singer, Denise E. Kirschner. Influence of backward bifurcation on interpretation of $R_0$ in a model of epidemic tuberculosis with reinfection. Mathematical Biosciences & Engineering, 2004, 1 (1) : 81-93. doi: 10.3934/mbe.2004.1.81

[4]

Robert Skiba, Nils Waterstraat. The index bundle and multiparameter bifurcation for discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5603-5629. doi: 10.3934/dcds.2017243

[5]

Yancong Xu, Deming Zhu, Xingbo Liu. Bifurcations of multiple homoclinics in general dynamical systems. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 945-963. doi: 10.3934/dcds.2011.30.945

[6]

Kazuyuki Yagasaki. Optimal control of the SIR epidemic model based on dynamical systems theory. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2501-2513. doi: 10.3934/dcdsb.2021144

[7]

Xiangjin Xu. Multiple solutions of super-quadratic second order dynamical systems. Conference Publications, 2003, 2003 (Special) : 926-934. doi: 10.3934/proc.2003.2003.926

[8]

Thierry Horsin, Mohamed Ali Jendoubi. Asymptotics for some discretizations of dynamical systems, application to second order systems with non-local nonlinearities. Communications on Pure and Applied Analysis, 2022, 21 (3) : 999-1025. doi: 10.3934/cpaa.2022007

[9]

Alexander Krasnosel'skii, Alexei Pokrovskii. On subharmonics bifurcation in equations with homogeneous nonlinearities. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 747-762. doi: 10.3934/dcds.2001.7.747

[10]

Dongsheng Kang, Liangshun Xu. Biharmonic systems involving multiple Rellich-type potentials and critical Rellich-Sobolev nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (2) : 333-346. doi: 10.3934/cpaa.2018019

[11]

E. N. Dancer. Some bifurcation results for rapidly growing nonlinearities. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 153-161. doi: 10.3934/dcds.2013.33.153

[12]

Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3745-3769. doi: 10.3934/dcds.2015.35.3745

[13]

Yunfei Peng, X. Xiang, W. Wei. Backward problems of nonlinear dynamical equations on time scales. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1553-1564. doi: 10.3934/dcdss.2011.4.1553

[14]

Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022069

[15]

Arnaud Ducrot, Michel Langlais, Pierre Magal. Multiple travelling waves for an $SI$-epidemic model. Networks and Heterogeneous Media, 2013, 8 (1) : 171-190. doi: 10.3934/nhm.2013.8.171

[16]

Sumei Li, Yicang Zhou. Backward bifurcation of an HTLV-I model with immune response. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 863-881. doi: 10.3934/dcdsb.2016.21.863

[17]

Muntaser Safan, Klaus Dietz. On the eradicability of infections with partially protective vaccination in models with backward bifurcation. Mathematical Biosciences & Engineering, 2009, 6 (2) : 395-407. doi: 10.3934/mbe.2009.6.395

[18]

Younghae Do, Juan M. Lopez. Slow passage through multiple bifurcation points. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 95-107. doi: 10.3934/dcdsb.2013.18.95

[19]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5003-5036. doi: 10.3934/dcds.2015.35.5003

[20]

Kai Wang, Zhidong Teng, Xueliang Zhang. Dynamical behaviors of an Echinococcosis epidemic model with distributed delays. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1425-1445. doi: 10.3934/mbe.2017074

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]