2013, 10(5&6): 1635-1650. doi: 10.3934/mbe.2013.10.1635

Chemostats and epidemics: Competition for nutrients/hosts

1. 

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804

2. 

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287

Received  February 2013 Revised  April 2013 Published  August 2013

In a chemostat, several species compete for the same nutrient, while in an epidemic, several strains of the same pathogen may compete for the same susceptible hosts. As winner, chemostat models predict the species with the lowest break-even concentration, while epidemic models predict the strain with the largest basic reproduction number. We show that these predictions amount to the same if the per capita functional responses of consumer species to the nutrient concentration or of infective individuals to the density of susceptibles are proportional to each other but that they are different if the functional responses are nonproportional. In the second case, the correct prediction is given by the break-even concentrations. In the case of nonproportional functional responses, we add a class for which the prediction does not only rely on local stability and instability of one-species (strain) equilibria but on the global outcome of the competition. We also review some results for nonautonomous models.
Citation: Hal L. Smith, Horst R. Thieme. Chemostats and epidemics: Competition for nutrients/hosts. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1635-1650. doi: 10.3934/mbe.2013.10.1635
References:
[1]

A. S. Ackleh and L. J. S. Allen, Competitive exclusion and coexistence for pathogens in an epidemic model with variable population size,, J. Math. Biol., 47 (2003), 153. doi: 10.1007/s00285-003-0207-9. Google Scholar

[2]

A. S. Ackleh and L. J. S. Allen, Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality,, Discrete and Continuous Dynamical Systems Series B, 5 (2005), 175. doi: 10.3934/dcdsb.2005.5.175. Google Scholar

[3]

P. Adda, J. L. Dimi, A. Iggidr, J. C. Kamgang, G. Sallet and J. J. Tewa, General models of host-parasite systems. Global analysis,, Disc. Cont. Dyn. Syst. Ser. B, 8 (2007), 1. doi: 10.3934/dcdsb.2007.8.1. Google Scholar

[4]

R. M. Anderson and R. M. May, Coevolution of host and parasites,, Parasitology, 85 (1982), 411. doi: 10.1111/j.1095-8312.2009.01256.x. Google Scholar

[5]

J. Arino, S. S. Pilyugin and G. S. K. Wolkowicz, Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models,, Can. Appl. Math. Q., 11 (2003), 107. Google Scholar

[6]

R. A. Armstrong and R. McGehee, Competitive exclusion,, Amer. Natur., 115 (1980), 151. doi: 10.1086/283553. Google Scholar

[7]

F. B. Bader, Kinetics of double-substrate limited growth,, in, (1982), 1. Google Scholar

[8]

M. M. Ballyk, C. C. McCluskey and G. S. K. Wolkowicz, Global analysis of competition for perfectly substituable resources with linear response,, J. Math. Biol., 51 (2005), 458. doi: 10.1007/s00285-005-0333-7. Google Scholar

[9]

M. M. Ballyk and G. S. K. Wolkowicz, Exploitative competition in the chemostat for two perfectly substitutable resources,, Math. Biosci., 118 (1993), 127. doi: 10.1016/0025-5564(93)90050-K. Google Scholar

[10]

E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay,, Nonlinear Analysis, 47 (2001), 4107. doi: 10.1016/S0362-546X(01)00528-4. Google Scholar

[11]

F. F. Blackman, Optima and limiting factors,, Ann. Bot. London, 19 (1905), 281. Google Scholar

[12]

C. J. Briggs and H. C. J. Godfray, The dynamics of insect-pathogen interactions in stage-structured populations,, Amer. Nat., 145 (1995), 855. doi: 10.1086/285774. Google Scholar

[13]

H.-J. Bremermann and H. R. Thieme, A competition exclusion principle for pathogen virulence,, J. Math. Biol., 27 (1989), 179. doi: 10.1007/BF00276102. Google Scholar

[14]

G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake,, SIAM J. Appl. Math., 45 (1985), 138. doi: 10.1137/0145006. Google Scholar

[15]

V. Capasso, "Mathematical Structures of Epidemic Systems,", Lecture Notes in Biomathematics, 97 (1993). doi: 10.1007/978-3-540-70514-7. Google Scholar

[16]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic model,, Math. Biosci., 42 (1978), 43. doi: 10.1016/0025-5564(78)90006-8. Google Scholar

[17]

C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models,, in, (1995), 33. Google Scholar

[18]

J. M. Cushing, Two species competition in a periodic environment,, J. Math. Biol., 10 (1980), 385. doi: 10.1007/BF00276097. Google Scholar

[19]

P. de Mottoni and A. Schiaffino, Competition systems with periodic coefficients: A geometric approach,, J. Math. Biol., 11 (1981), 319. doi: 10.1007/BF00276900. Google Scholar

[20]

O. Diekmann, The many facets of evolutionary dynamics,, J. Biol. Systems, 5 (1997), 325. doi: 10.1142/S0218339097000205. Google Scholar

[21]

O. Diekmann, A beginners guide to adaptive dynamics,, in, 63 (2004), 47. Google Scholar

[22]

O. Diekmann, J. A. P. Heesterbeek and T. Britton, "Mathematical Tools for Understanding Infectious Disease Dynamics,", Princeton Series in Theoretical and Computational Biology, (2013). Google Scholar

[23]

P. W. Ewald and G. De Leo, Alternative transmission modes and the evolution of virulence,, in, (2002), 10. doi: 10.1017/CBO9780511525728.004. Google Scholar

[24]

A. Fall, A. Iggidr, G. Sallet and J. J. Tewa, Epidemiological models and Lyapunov functions,, Math. Model. Nat. Phenom., 2 (2007), 55. doi: 10.1051/mmnp:2008011. Google Scholar

[25]

H. I. Freedman and Y. Xu, Models of competition in the chemostat with instantaneous and delayed nutrient recycling,, J. Math. Biol., 31 (1993), 513. doi: 10.1007/BF00173890. Google Scholar

[26]

P. Georgescu and Y.-H. Hsieh, Global stability for a virus dynamics model with nonlinear incidence of infection and removal,, SIAM J. Appl. Math., 67 (): 337. doi: 10.1137/060654876. Google Scholar

[27]

B. S. Goh, Global stability in many species systems,, Amer. Nat., 111 (1977), 135. doi: 10.1086/283144. Google Scholar

[28]

H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases,, Math. Biosci. Engin., 3 (2006), 513. doi: 10.3934/mbe.2006.3.513. Google Scholar

[29]

H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions,, Proc. Amer. Math. Soc., 136 (2008), 2793. doi: 10.1090/S0002-9939-08-09341-6. Google Scholar

[30]

H. Guo, M. Y. Li and Z. Shuai, Global stability in multigroup epidemic models,, in, 11 (2009), 268. Google Scholar

[31]

W. M. Hirsch, H. Hanisch and J.-P. Gabriel, Differential equation models for some parasitic infections: Methods for the study of asymptotic behavior,, Comm. Pure Appl. Math., 38 (1985), 733. doi: 10.1002/cpa.3160380607. Google Scholar

[32]

S.-B. Hsu, Limiting behavior for competing species,, SIAM J. Appl. Math., 34 (1978), 760. doi: 10.1137/0134064. Google Scholar

[33]

S.-B. Hsu, S. P. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in a continuous culture of micro-organisms,, SIAM J. App. Math., 32 (1977), 366. doi: 10.1137/0132030. Google Scholar

[34]

S.-B. Hsu, A competition model for a seasonally fluctuating nutrient,, J. Math. Biol., 9 (1980), 115. doi: 10.1007/BF00275917. Google Scholar

[35]

S.-B. Hsu, A survey of constructing Lyapunov functions for mathematical models in population biology,, Taiwanese J. Math., 9 (2005), 151. Google Scholar

[36]

A. Iggidr, J.-C. Kamgang, G. Sallet and J.-J. Tewa, Global analysis of new malaria intrahost models with a competitive exclusion principle,, SIAM J. Appl. Math., 67 (2006), 260. doi: 10.1137/050643271. Google Scholar

[37]

A. Iggidr, J. Mbang and G. Sallet, Stability analysis of within-host parasite models with delays,, Math. Biosci., 209 (2007), 51. doi: 10.1016/j.mbs.2007.01.008. Google Scholar

[38]

V. S. Ivlev, "Experimental Ecology of the Feeding of Fishes,", Yale University Press, (1955). Google Scholar

[39]

A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models,, Math. Med. Biol., 21 (2004), 75. doi: 10.1007/s11538-008-9352-z. Google Scholar

[40]

A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission,, Bull. Math. Biol., 68 (2006), 615. doi: 10.1007/s11538-005-9037-9. Google Scholar

[41]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871. doi: 10.1007/s11538-007-9196-y. Google Scholar

[42]

A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence and non-linear incidence rate,, Math. Med. Biol., 26 (2009), 225. doi: 10.1093/imammb/dqp009. Google Scholar

[43]

A. Korobeinikov and P. K. Maini, Nonlinear incidence and stability of infectious disease models,, MMB IMA, 22 (2005), 113. Google Scholar

[44]

A. Korobeinikov and G. C. Wake, Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models,, Appl. Math. Letters, 15 (2002), 955. doi: 10.1016/S0893-9659(02)00069-1. Google Scholar

[45]

B. Li, Global asymptotic behavior of the chemostat: General response functions and different removal rates,, SIAM J. Appl. Math., 59 (1999), 411. doi: 10.1137/S003613999631100X. Google Scholar

[46]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434. doi: 10.1137/090779322. Google Scholar

[47]

M. Y. Li and Z. Shuai, Global stability problem for coupled systems of differential equations on networks,, J. Differential Eqns., 248 (2010), 1. doi: 10.1016/j.jde.2009.09.003. Google Scholar

[48]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays,, J. Math. Anal. Appl., 361 (2010), 38. doi: 10.1016/j.jmaa.2009.09.017. Google Scholar

[49]

X. Lin and J. W.-H. So, Global stability of the endemic equilibrium and uniform persistence in epidemic models with subpopulations,, J. Austral. Math. Soc. Ser. B, 34 (1993), 282. doi: 10.1017/S0334270000008900. Google Scholar

[50]

S. Liu and L. Wang, Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy,, Math. Biosci. Eng., 7 (2010), 675. doi: 10.3934/mbe.2010.7.675. Google Scholar

[51]

P. Magal, C. C. McCluskey and G. F. Webb, Liapunov functional and global asymptotic stability for an infection-age model,, Applicable Analysis, 89 (2010), 1109. doi: 10.1080/00036810903208122. Google Scholar

[52]

M. Martcheva, A non-autonomous multi-strain SIS epidemic model,, J. Biol. Dyn., 3 (2009), 235. doi: 10.1080/17513750802638712. Google Scholar

[53]

M. Martcheva, S. S. Pilyugin and R. D. Holt, Subthreshold and superthreshold coexistence of pathogen variants: The impact of host structure,, Math. Biosci., 207 (2007), 58. doi: 10.1016/j.mbs.2006.09.010. Google Scholar

[54]

C. C. McCluskey, Lyapunov functions for tuberculosis models with fast and slow progression,, Math. Biosci. Eng., 3 (2006), 603. doi: 10.3934/mbe.2006.3.603. Google Scholar

[55]

C. C. McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis,, J. Math. Anal. Appl., 338 (2008), 518. doi: 10.1016/j.jmaa.2007.05.012. Google Scholar

[56]

C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. Engin., 6 (2009), 603. doi: 10.3934/mbe.2009.6.603. Google Scholar

[57]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete,, Nonlinear Anal. RWA, 11 (2010), 55. doi: 10.1016/j.nonrwa.2008.10.014. Google Scholar

[58]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence,, Nonlinear Anal. RWA, 11 (2010), 3106. doi: 10.1016/j.nonrwa.2009.11.005. Google Scholar

[59]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and general nonlinear incidence,, Math. Biosci. Engin., 7 (2010), 837. doi: 10.3934/mbe.2010.7.837. Google Scholar

[60]

J. Mena-Lorca, J. X. Velasco-Hernandez and C. Castillo-Chavez, Density-dependent dynamics and superinfection in an epidemic model,, IMA J. Math. Appl. Med. Biol., 16 (1999), 307. Google Scholar

[61]

J. A. J. Metz, S. D. Mylius and O. Diekmann, When does evolution optimise?, Evolutionary Ecology Research, 10 (2008), 629. Google Scholar

[62]

J. Prüss, L. Pujo-Menjouet and G. F. Webb, Analysis of a model for the dynamics of prions,, Discr. Contin. Dyn. Syst. B, 6 (2006), 225. Google Scholar

[63]

J. Roughgarden, "Theory of Population Genetics and Evolutionary Ecology: An Introduction,", Macmillan, (1979). Google Scholar

[64]

S. Ruan and X.-Z. He, Global stability in chemostat-type competition models with nutrient recycling,, SIAM J. Appl. Math., 58 (1998), 170. doi: 10.1137/S0036139996299248. Google Scholar

[65]

T. Sari and F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields,, Math. Biosci. Eng., 8 (2011), 827. doi: 10.3934/mbe.2011.8.827. Google Scholar

[66]

H. L. Smith, Competitive coexistence in an oscillating chemostat,, SIAM J. Appl. Math., 40 (1981), 498. doi: 10.1137/0140042. Google Scholar

[67]

H. L. Smith and P. Waltman, "The Theory of the Chemostat: Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995). doi: 10.1017/CBO9780511530043. Google Scholar

[68]

S. Tennenbaum, T. G. Kassem, S. Roudenko and C. Castillo-Chavez, The role of transactional sex in spreading HIV in Nigeria,, in, 410 (2006), 367. doi: 10.1090/conm/410/07737. Google Scholar

[69]

H. R. Thieme, "Mathematics in Population Biology,", Princeton Series in Theoretical and Computational Biology, (2003). Google Scholar

[70]

H. R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators,, J. Differential Eqns., 250 (2011), 3772. doi: 10.1016/j.jde.2011.01.007. Google Scholar

[71]

H. R. Thieme, Pathogen competition and coexistence and the evolution of virulence,, in, (2007), 123. Google Scholar

[72]

V. Volterra, "Leçons sur la Théorie Mathématique de la Lutte pour la Vie,", Gauthier-Villars, (1931). Google Scholar

[73]

E. B. Wilson and J. Worcester, The law of mass action in epidemiology, Part I,, Proc. Nat. Acad. Sci., 31 (1945), 24. doi: 10.1073/pnas.31.9.294. Google Scholar

[74]

G. S. K. Wolkowicz, Successful invasion of a food web in a chemostat,, Math. Biosci., 93 (1989), 249. doi: 10.1016/0025-5564(89)90025-4. Google Scholar

[75]

G. S. K. Wolkowicz, M. M. Ballyk and S. P. Daoussis, Interaction in a chemostat: Introduction of a competitor can promote greater diversity,, Rocky Mountain Journal of Mathematics, 25 (1995), 515. doi: 10.1216/rmjm/1181072300. Google Scholar

[76]

G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates,, SIAM J. Appl. Math., 52 (1992), 222. doi: 10.1137/0152012. Google Scholar

[77]

G. S. K. Wolkowicz and H. Xia, Global asymptotic behavior of a chemostat model with discrete delay,, SIAM J. Appl. Math., 57 (1997), 1019. doi: 10.1137/S0036139995287314. Google Scholar

[78]

G. S. K. Wolkowicz and X.-Q. Zhao, $N$-species competition in a periodic chemostat,, Differential Integral Equations, 11 (1998), 465. Google Scholar

show all references

References:
[1]

A. S. Ackleh and L. J. S. Allen, Competitive exclusion and coexistence for pathogens in an epidemic model with variable population size,, J. Math. Biol., 47 (2003), 153. doi: 10.1007/s00285-003-0207-9. Google Scholar

[2]

A. S. Ackleh and L. J. S. Allen, Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality,, Discrete and Continuous Dynamical Systems Series B, 5 (2005), 175. doi: 10.3934/dcdsb.2005.5.175. Google Scholar

[3]

P. Adda, J. L. Dimi, A. Iggidr, J. C. Kamgang, G. Sallet and J. J. Tewa, General models of host-parasite systems. Global analysis,, Disc. Cont. Dyn. Syst. Ser. B, 8 (2007), 1. doi: 10.3934/dcdsb.2007.8.1. Google Scholar

[4]

R. M. Anderson and R. M. May, Coevolution of host and parasites,, Parasitology, 85 (1982), 411. doi: 10.1111/j.1095-8312.2009.01256.x. Google Scholar

[5]

J. Arino, S. S. Pilyugin and G. S. K. Wolkowicz, Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models,, Can. Appl. Math. Q., 11 (2003), 107. Google Scholar

[6]

R. A. Armstrong and R. McGehee, Competitive exclusion,, Amer. Natur., 115 (1980), 151. doi: 10.1086/283553. Google Scholar

[7]

F. B. Bader, Kinetics of double-substrate limited growth,, in, (1982), 1. Google Scholar

[8]

M. M. Ballyk, C. C. McCluskey and G. S. K. Wolkowicz, Global analysis of competition for perfectly substituable resources with linear response,, J. Math. Biol., 51 (2005), 458. doi: 10.1007/s00285-005-0333-7. Google Scholar

[9]

M. M. Ballyk and G. S. K. Wolkowicz, Exploitative competition in the chemostat for two perfectly substitutable resources,, Math. Biosci., 118 (1993), 127. doi: 10.1016/0025-5564(93)90050-K. Google Scholar

[10]

E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay,, Nonlinear Analysis, 47 (2001), 4107. doi: 10.1016/S0362-546X(01)00528-4. Google Scholar

[11]

F. F. Blackman, Optima and limiting factors,, Ann. Bot. London, 19 (1905), 281. Google Scholar

[12]

C. J. Briggs and H. C. J. Godfray, The dynamics of insect-pathogen interactions in stage-structured populations,, Amer. Nat., 145 (1995), 855. doi: 10.1086/285774. Google Scholar

[13]

H.-J. Bremermann and H. R. Thieme, A competition exclusion principle for pathogen virulence,, J. Math. Biol., 27 (1989), 179. doi: 10.1007/BF00276102. Google Scholar

[14]

G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake,, SIAM J. Appl. Math., 45 (1985), 138. doi: 10.1137/0145006. Google Scholar

[15]

V. Capasso, "Mathematical Structures of Epidemic Systems,", Lecture Notes in Biomathematics, 97 (1993). doi: 10.1007/978-3-540-70514-7. Google Scholar

[16]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic model,, Math. Biosci., 42 (1978), 43. doi: 10.1016/0025-5564(78)90006-8. Google Scholar

[17]

C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models,, in, (1995), 33. Google Scholar

[18]

J. M. Cushing, Two species competition in a periodic environment,, J. Math. Biol., 10 (1980), 385. doi: 10.1007/BF00276097. Google Scholar

[19]

P. de Mottoni and A. Schiaffino, Competition systems with periodic coefficients: A geometric approach,, J. Math. Biol., 11 (1981), 319. doi: 10.1007/BF00276900. Google Scholar

[20]

O. Diekmann, The many facets of evolutionary dynamics,, J. Biol. Systems, 5 (1997), 325. doi: 10.1142/S0218339097000205. Google Scholar

[21]

O. Diekmann, A beginners guide to adaptive dynamics,, in, 63 (2004), 47. Google Scholar

[22]

O. Diekmann, J. A. P. Heesterbeek and T. Britton, "Mathematical Tools for Understanding Infectious Disease Dynamics,", Princeton Series in Theoretical and Computational Biology, (2013). Google Scholar

[23]

P. W. Ewald and G. De Leo, Alternative transmission modes and the evolution of virulence,, in, (2002), 10. doi: 10.1017/CBO9780511525728.004. Google Scholar

[24]

A. Fall, A. Iggidr, G. Sallet and J. J. Tewa, Epidemiological models and Lyapunov functions,, Math. Model. Nat. Phenom., 2 (2007), 55. doi: 10.1051/mmnp:2008011. Google Scholar

[25]

H. I. Freedman and Y. Xu, Models of competition in the chemostat with instantaneous and delayed nutrient recycling,, J. Math. Biol., 31 (1993), 513. doi: 10.1007/BF00173890. Google Scholar

[26]

P. Georgescu and Y.-H. Hsieh, Global stability for a virus dynamics model with nonlinear incidence of infection and removal,, SIAM J. Appl. Math., 67 (): 337. doi: 10.1137/060654876. Google Scholar

[27]

B. S. Goh, Global stability in many species systems,, Amer. Nat., 111 (1977), 135. doi: 10.1086/283144. Google Scholar

[28]

H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases,, Math. Biosci. Engin., 3 (2006), 513. doi: 10.3934/mbe.2006.3.513. Google Scholar

[29]

H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions,, Proc. Amer. Math. Soc., 136 (2008), 2793. doi: 10.1090/S0002-9939-08-09341-6. Google Scholar

[30]

H. Guo, M. Y. Li and Z. Shuai, Global stability in multigroup epidemic models,, in, 11 (2009), 268. Google Scholar

[31]

W. M. Hirsch, H. Hanisch and J.-P. Gabriel, Differential equation models for some parasitic infections: Methods for the study of asymptotic behavior,, Comm. Pure Appl. Math., 38 (1985), 733. doi: 10.1002/cpa.3160380607. Google Scholar

[32]

S.-B. Hsu, Limiting behavior for competing species,, SIAM J. Appl. Math., 34 (1978), 760. doi: 10.1137/0134064. Google Scholar

[33]

S.-B. Hsu, S. P. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in a continuous culture of micro-organisms,, SIAM J. App. Math., 32 (1977), 366. doi: 10.1137/0132030. Google Scholar

[34]

S.-B. Hsu, A competition model for a seasonally fluctuating nutrient,, J. Math. Biol., 9 (1980), 115. doi: 10.1007/BF00275917. Google Scholar

[35]

S.-B. Hsu, A survey of constructing Lyapunov functions for mathematical models in population biology,, Taiwanese J. Math., 9 (2005), 151. Google Scholar

[36]

A. Iggidr, J.-C. Kamgang, G. Sallet and J.-J. Tewa, Global analysis of new malaria intrahost models with a competitive exclusion principle,, SIAM J. Appl. Math., 67 (2006), 260. doi: 10.1137/050643271. Google Scholar

[37]

A. Iggidr, J. Mbang and G. Sallet, Stability analysis of within-host parasite models with delays,, Math. Biosci., 209 (2007), 51. doi: 10.1016/j.mbs.2007.01.008. Google Scholar

[38]

V. S. Ivlev, "Experimental Ecology of the Feeding of Fishes,", Yale University Press, (1955). Google Scholar

[39]

A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models,, Math. Med. Biol., 21 (2004), 75. doi: 10.1007/s11538-008-9352-z. Google Scholar

[40]

A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission,, Bull. Math. Biol., 68 (2006), 615. doi: 10.1007/s11538-005-9037-9. Google Scholar

[41]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871. doi: 10.1007/s11538-007-9196-y. Google Scholar

[42]

A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence and non-linear incidence rate,, Math. Med. Biol., 26 (2009), 225. doi: 10.1093/imammb/dqp009. Google Scholar

[43]

A. Korobeinikov and P. K. Maini, Nonlinear incidence and stability of infectious disease models,, MMB IMA, 22 (2005), 113. Google Scholar

[44]

A. Korobeinikov and G. C. Wake, Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models,, Appl. Math. Letters, 15 (2002), 955. doi: 10.1016/S0893-9659(02)00069-1. Google Scholar

[45]

B. Li, Global asymptotic behavior of the chemostat: General response functions and different removal rates,, SIAM J. Appl. Math., 59 (1999), 411. doi: 10.1137/S003613999631100X. Google Scholar

[46]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434. doi: 10.1137/090779322. Google Scholar

[47]

M. Y. Li and Z. Shuai, Global stability problem for coupled systems of differential equations on networks,, J. Differential Eqns., 248 (2010), 1. doi: 10.1016/j.jde.2009.09.003. Google Scholar

[48]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays,, J. Math. Anal. Appl., 361 (2010), 38. doi: 10.1016/j.jmaa.2009.09.017. Google Scholar

[49]

X. Lin and J. W.-H. So, Global stability of the endemic equilibrium and uniform persistence in epidemic models with subpopulations,, J. Austral. Math. Soc. Ser. B, 34 (1993), 282. doi: 10.1017/S0334270000008900. Google Scholar

[50]

S. Liu and L. Wang, Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy,, Math. Biosci. Eng., 7 (2010), 675. doi: 10.3934/mbe.2010.7.675. Google Scholar

[51]

P. Magal, C. C. McCluskey and G. F. Webb, Liapunov functional and global asymptotic stability for an infection-age model,, Applicable Analysis, 89 (2010), 1109. doi: 10.1080/00036810903208122. Google Scholar

[52]

M. Martcheva, A non-autonomous multi-strain SIS epidemic model,, J. Biol. Dyn., 3 (2009), 235. doi: 10.1080/17513750802638712. Google Scholar

[53]

M. Martcheva, S. S. Pilyugin and R. D. Holt, Subthreshold and superthreshold coexistence of pathogen variants: The impact of host structure,, Math. Biosci., 207 (2007), 58. doi: 10.1016/j.mbs.2006.09.010. Google Scholar

[54]

C. C. McCluskey, Lyapunov functions for tuberculosis models with fast and slow progression,, Math. Biosci. Eng., 3 (2006), 603. doi: 10.3934/mbe.2006.3.603. Google Scholar

[55]

C. C. McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis,, J. Math. Anal. Appl., 338 (2008), 518. doi: 10.1016/j.jmaa.2007.05.012. Google Scholar

[56]

C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. Engin., 6 (2009), 603. doi: 10.3934/mbe.2009.6.603. Google Scholar

[57]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete,, Nonlinear Anal. RWA, 11 (2010), 55. doi: 10.1016/j.nonrwa.2008.10.014. Google Scholar

[58]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence,, Nonlinear Anal. RWA, 11 (2010), 3106. doi: 10.1016/j.nonrwa.2009.11.005. Google Scholar

[59]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and general nonlinear incidence,, Math. Biosci. Engin., 7 (2010), 837. doi: 10.3934/mbe.2010.7.837. Google Scholar

[60]

J. Mena-Lorca, J. X. Velasco-Hernandez and C. Castillo-Chavez, Density-dependent dynamics and superinfection in an epidemic model,, IMA J. Math. Appl. Med. Biol., 16 (1999), 307. Google Scholar

[61]

J. A. J. Metz, S. D. Mylius and O. Diekmann, When does evolution optimise?, Evolutionary Ecology Research, 10 (2008), 629. Google Scholar

[62]

J. Prüss, L. Pujo-Menjouet and G. F. Webb, Analysis of a model for the dynamics of prions,, Discr. Contin. Dyn. Syst. B, 6 (2006), 225. Google Scholar

[63]

J. Roughgarden, "Theory of Population Genetics and Evolutionary Ecology: An Introduction,", Macmillan, (1979). Google Scholar

[64]

S. Ruan and X.-Z. He, Global stability in chemostat-type competition models with nutrient recycling,, SIAM J. Appl. Math., 58 (1998), 170. doi: 10.1137/S0036139996299248. Google Scholar

[65]

T. Sari and F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields,, Math. Biosci. Eng., 8 (2011), 827. doi: 10.3934/mbe.2011.8.827. Google Scholar

[66]

H. L. Smith, Competitive coexistence in an oscillating chemostat,, SIAM J. Appl. Math., 40 (1981), 498. doi: 10.1137/0140042. Google Scholar

[67]

H. L. Smith and P. Waltman, "The Theory of the Chemostat: Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995). doi: 10.1017/CBO9780511530043. Google Scholar

[68]

S. Tennenbaum, T. G. Kassem, S. Roudenko and C. Castillo-Chavez, The role of transactional sex in spreading HIV in Nigeria,, in, 410 (2006), 367. doi: 10.1090/conm/410/07737. Google Scholar

[69]

H. R. Thieme, "Mathematics in Population Biology,", Princeton Series in Theoretical and Computational Biology, (2003). Google Scholar

[70]

H. R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators,, J. Differential Eqns., 250 (2011), 3772. doi: 10.1016/j.jde.2011.01.007. Google Scholar

[71]

H. R. Thieme, Pathogen competition and coexistence and the evolution of virulence,, in, (2007), 123. Google Scholar

[72]

V. Volterra, "Leçons sur la Théorie Mathématique de la Lutte pour la Vie,", Gauthier-Villars, (1931). Google Scholar

[73]

E. B. Wilson and J. Worcester, The law of mass action in epidemiology, Part I,, Proc. Nat. Acad. Sci., 31 (1945), 24. doi: 10.1073/pnas.31.9.294. Google Scholar

[74]

G. S. K. Wolkowicz, Successful invasion of a food web in a chemostat,, Math. Biosci., 93 (1989), 249. doi: 10.1016/0025-5564(89)90025-4. Google Scholar

[75]

G. S. K. Wolkowicz, M. M. Ballyk and S. P. Daoussis, Interaction in a chemostat: Introduction of a competitor can promote greater diversity,, Rocky Mountain Journal of Mathematics, 25 (1995), 515. doi: 10.1216/rmjm/1181072300. Google Scholar

[76]

G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates,, SIAM J. Appl. Math., 52 (1992), 222. doi: 10.1137/0152012. Google Scholar

[77]

G. S. K. Wolkowicz and H. Xia, Global asymptotic behavior of a chemostat model with discrete delay,, SIAM J. Appl. Math., 57 (1997), 1019. doi: 10.1137/S0036139995287314. Google Scholar

[78]

G. S. K. Wolkowicz and X.-Q. Zhao, $N$-species competition in a periodic chemostat,, Differential Integral Equations, 11 (1998), 465. Google Scholar

[1]

Azmy S. Ackleh, Linda J. S. Allen. Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 175-188. doi: 10.3934/dcdsb.2005.5.175

[2]

Hao Wang, Katherine Dunning, James J. Elser, Yang Kuang. Daphnia species invasion, competitive exclusion, and chaotic coexistence. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 481-493. doi: 10.3934/dcdsb.2009.12.481

[3]

M. R. S. Kulenović, Orlando Merino. Competitive-exclusion versus competitive-coexistence for systems in the plane. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1141-1156. doi: 10.3934/dcdsb.2006.6.1141

[4]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[5]

Yixiang Wu, Necibe Tuncer, Maia Martcheva. Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1167-1187. doi: 10.3934/dcdsb.2017057

[6]

Azmy S. Ackleh, Youssef M. Dib, S. R.-J. Jang. Competitive exclusion and coexistence in a nonlinear refuge-mediated selection model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 683-698. doi: 10.3934/dcdsb.2007.7.683

[7]

Azmy S. Ackleh, Keng Deng, Yixiang Wu. Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 1-18. doi: 10.3934/mbe.2016.13.1

[8]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[9]

Abdelrazig K. Tarboush, Jing Ge, Zhigui Lin. Coexistence of a cross-diffusive West Nile virus model in a heterogenous environment. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1479-1494. doi: 10.3934/mbe.2018068

[10]

Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255

[11]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[12]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[13]

Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193

[14]

Shanbing Li, Jianhua Wu. Effect of cross-diffusion in the diffusion prey-predator model with a protection zone. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1539-1558. doi: 10.3934/dcds.2017063

[15]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[16]

Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631

[17]

Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597

[18]

Salomé Martínez, Wei-Ming Ni. Periodic solutions for a 3x 3 competitive system with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 725-746. doi: 10.3934/dcds.2006.15.725

[19]

Yi Li, Chunshan Zhao. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 185-192. doi: 10.3934/dcds.2005.12.185

[20]

Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019198

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]