Citation: |
[1] |
F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology," Second edition, Texts in Applied Mathematics, 40, Springer-Verlag, New York, 2012.doi: 10.1007/978-1-4614-1686-9. |
[2] |
H. Cao, Y. Zhou and B. Song, Complex dynamics of discrete SEIS models with simple demography, Discrete Dynamics in Nature and Society, 2011, Art. ID 653937, 21 pp.doi: 10.1155/2011/653937. |
[3] |
C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosc. Eng., 1 (2004), 361-404.doi: 10.3934/mbe.2004.1.361. |
[4] |
X. S. Chen, X. D. Gong, G. J. Liang and G. C. Zhang, Epidemiologic trends of sexually transmitted diseases in China, Sex Transm. Dis., 27 (2000), 138-142.doi: 10.1097/00007435-200003000-00003. |
[5] |
J. Cui, X. Mu and H. Wan, Saturation recovery leads to multiple endemic equilibria and backward bifurcation, J. Theor. Biol., 254 (2008), 275-283.doi: 10.1016/j.jtbi.2008.05.015. |
[6] |
H. W. Hethcote and J. A. Yorke, "Gonorrhea Transmission Dynamics and Control," Lecture Notes in Biomathematics, Vol. 56, Springer-Verlag, New York, 1984. |
[7] |
Z. Hu, S. Liu and H. Wang, Backward bifurcation of an epidemic model with standard incidence rate and treatment rate, Nonlinear Analysis, 9 (2008), 2302-2312.doi: 10.1016/j.nonrwa.2007.08.009. |
[8] |
X. Li, W. Li and Mini Ghosh, Stability and bifurcation of an epidemic model with nonlinear incidence and treatment, Applied Mathematics and Computation, 210 (2009), 141-150.doi: 10.1016/j.amc.2008.12.085. |
[9] |
B. R. Morin, L. Medina-Rios, E. T. Camacho and C. Castillo-Chavez, Static behavioral effects on gonorrhea transmission dynamics in a MSM population, J. Theor. Biol., 267 (2012), 35-40.doi: 10.1016/j.jtbi.2010.07.027. |
[10] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6. |
[11] |
W. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci., 201 (2006), 58-71.doi: 10.1016/j.mbs.2005.12.022. |
[12] |
X. Zhang and X. Liu, Bifurcation of an epidemic model with saturated treatment function, J. Math. Anal. Appl., 348 (2008), 433-443.doi: 10.1016/j.jmaa.2008.07.042. |
[13] |
Centers for Disease Control and Prevention, Gonorrhea-CDC fact sheet, June 2012. Available from: http://www.cdc.gov/std/gonorrhea/STDFact-gonorrhea-detailed.htm. |
[14] |
China Yearbook. Available from: http://www.yearbook.cn/. |
[15] |
Ministry of Health of the People's Republic of China. Available from: http://www.moh.gov.cn/publicfiles/business/htmlfiles/mohjbyfkzj/s2907/index.htm. |